CONTROL OF INITIALIZATION BIAS IN QUEUEING SIMULATIONS
USING QUEUEING APPROXIMATIONS

Lo | Ea

CRELECTERR)
“ MAY 1 2 1995 B .
| F A Thesis
Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment
of the Requirements for the Degree

Master of Science Systems Engineering

fhis dbocuml'i" elnt has been approved by

or public 23 )

dstibution is wnlimned S . Patrick James Delaney
May, 1995

19930511 045




APPROVAL SHEET

This thesis is submitted in partial fulfillment of the requirements for the degree of

Master of Science Systems Engineering

/ Author /

This thesis has been read and approved by the examining Committee:

Manaar D uitl

Thesis Advisor

ATl
,47 C vt

Accepted for the School of Engineering and Applied Science:

Accesion’ For \ |

NTIS CRAZI W @;\:} 1Y 2
DTIC  TAB I YN B

Unannourced I
Justification Dean, School of Engineering and

i Applied Science

BY

Distribution, 7]

Availability Codes | May, 1995
‘ Avail and|or
Dist Special




ABSTRACT

A person often simulates a discrete event dynamic system (DEDS) with initial
conditions that are not representative of the parameter he is trying to estimate. The reasons
for this vary from no knowledge of the long-run state (steady state) of the modeled systems
to complete disregard of this critically important piece of information. Regardless, the
result of incorrect initial conditions in a simulation model is usually a biased output
estimate. This bias based on incorrectly set initial conditions is commonly known as
initialization bias. Many people have researched ways to control, detect, or negate this bias
so we can derive accurate information from a simulation output sequence.

One way to minimize the initialization bias is to run a simulation for a large number
of observations. Often this is impractical or not affordable in time and money. For
example, a simple M/M/1 queueing model with a traffic intensity of 0.90 requires 13, 500,
000 observations to achieve an estimate with 1% absolute error to the true mean. This run
length equates to 25 hours of real time. In the end, the estimate still has 1% bias to the true
expected value. The question becomes, how much bias is acceptable?

The most widely used methodology of initialization bias control is that of data
truncation. The idea is that the stochastic nature of the random variables will ultimately
produce observations which are more representative of the steady-state of the system after a
period of transience. The initial transient observations which bias an estimate are not
representative of the steady state characteristics and can be deleted or thrown away. From
that point in the output sequence to the end, the estimate will be less biased than taking the
entire output sequence average. While these control methodologies are commonly known
as heuristics, they do serve a purpose to provide the decision maker with the best possible
information by doing the best they can with an output sequence.

This research focuses on producing a "good" estimate from sequentially corre%lted

simulation output data. I evaluate the use of proven accurate queueing approximations to




stochastically set the initial queue length from the approximated steady state distribution to
derive a "better" estimate than empty and idle, without the use of pilot runs. I also evaluate
how point approximations can assist in controlling the bias in output estimates of a desired
performance parameter through four truncation heuristics. The end result is a less biased

and more accurate estimator of the expected wait in a queueing model.
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CHAPTER 1. INTRODUCTION
The goal of my research is to develop a truncation method of a sequentially
correlated simulation output sequence to provide a more accurate and more precise estimate
of the steady state expected wait time in the queue as compared to the sample mean of the
output sequence. To accomplish this I make use of apriori information of the system that a
person creating a simulation model has. Iincorporate an analytical approximation to assist
me in getting my estimate. The following chapter introduces the problem of this research

as well as reviewing the fundamental concepts in simulation modeling analysis.

1.1. Simulation
Simulation is a method in modeling analysis. Often, simulation is used for systems
that are too complex and probabilistic for a simple analytical analysis. The system is
modeled with prescribed input and the model output is used as information in a decision
making process. We must understand what a simulation is and what a simulation produces
before we can flatly accept output of a simulation experiment.
"A simulation is the imitation of the operation of a real-world
process or system over time. Whether done by hand or on
a computer, simulation involves the generation of an artificial
history of a system, and the observation of that artificial
history to draw inferences concerning the operating
characteristics of the real system."!
The fact that a simulation is only a model does not mean the performance of the model will
be the actual performance of the real systems. In designing the simulation model, the
designer makes several assumptions of the real world system. If these assumptions, such
as the number of arrivals in an air passenger terminal in a set time, are erroneous, then no
matter how the model is manipulated, the output will be just as erroneous.
Simulation analysis is second only to linear programming in frequency of use of

operations research methods. Most simulation models focus on a discrete event dynamic

system (DEDS). That is, "the modeling of a system as it evolves over time in which state

' Banks & Carson 2}, p- 2.




variables change instantaneously at separate points in time."? There are several reasons to
use simulation. As pointed out by Ravindran, Phillips and Solberg[[26], p. 376], some
reasons to use simulation modeling analysis include:

i) Through simulations, one can study the effects of certain

information, organizational, and environmental changes of the

operation of a system by making alterations in the model of the

system and by observing the effects of these alterations on the

system's behavior

ii) A detailed observation of the system being simulated may lead to

a better understanding of the system and to suggestions for

improving it, which otherwise would be unobtainable.

ii) Simulation of complex systems can yield valuable insight into

which variables are more important than the others in the system and

how these variables interact.

iv) Simulation can be used to experiment with new situations about

which we have little or no information, so as to prepare for what

may happen.

v) Simulation can serve as a "preservice test" to try out new policies

and decision rules for operating a system, before running the risk of

experimenting on the real system.

vi) Simulation analysis can be performed to verify analytical
solutions.

The advantages of simulation analysis are diminished when we consider how easy
it is to use a simulation incorrectly. Simulation software makes it easy to create a model
and obtain a performance parameter estimate from the simulation output sequence. If we
accept a point estimate from even an extremely long simulation run, we run the risk of
accepting an erroneous estimate as an accurate estimate of the true performance parameter’s
expected value. We must understand the underlying process. We must also concern
ourselves with any method which may increase the variance of our analysis. I assume that
the sample average of wait times in the queue converges to the true value. I focus my
research on the initial transience of the output sequence. Additionally, since I ensure

common random numbers (CRN) and synchronization in my experiments, I consider any

2 Law & Kelton [20], p. 7.




variability of the estimates to be a result solely of the methodology and not from other

random variables which act on the system.

1.2. Queueing Models

A queueing system is characterized by an arrival, a service, and if the server is busy
at the time of arrival a waiting period in a queue. Queueing theory's applicability is
prevalent throughout our society. A business application of queueing theory is a telephone
communications network. Phone calls arrive on a particular line of communications only to
find out the line is busy. There has been an enormous amount of research which focuses
on minimizing the number of busy lines through network rerouting of phone calls. A toll
free catalog order business wants the person who dials its number to get through
immediately. If the line is busy, the caller may hang up and change his mind about
ordering the product. This is lost business. We can easily see how the business wants to
minimize the number of times a person calls and gets a busy signal. On the other hand
simply placing an overabundance of operators who are barely busy costs the business in
wages and benefits. Immediately, we can see the paradox of a queueing system. Often,
businesses build simulation models and evaluate how the system performs. This
information provides input in the decision making process.

The fact that a customer (phone call, person, etc.) has to wait in a queue is
probabilistic in nature. This probability of a queue existing has an associated probability
density function. We often simulate a queueing model because we have no knowledge of
this probability distribution. Indeed, if we knew the distribution, there would be little need
to simulate. We could get exact values of parameters we needed for our decision. Since
we do not know this distribution, and analytically determining a solution for a particularly

queueing system may be analytically intractable, we simulate.

1.3. Simulation of Queueing Systems & Data Analysis

The first step in simulation of a queueing system is to develop the model. A person




creating the model, usually, has first and second moment information about the arrival and
service times. This information, while it may not seem much, partially defines the
underlying distribution of the queue characteristics. We need to consider all information
we have when we develop the model. We also must understand we have no idea how the
system will behave when we begin to simulate it. In other words, the initial conditions we
start our model at may not be representative of the long run distribution. We must realize
that this could bias our desired estimate.

To negate the effects of incorrectly set initial conditions in a simulation model, we
would have to use an extremely long run to minimize the estimate bias of the performance
parameter. The M/M/1 empty and idle queue is a good example of a lengthy transient
period that requires a long run. As Whitt[37] points out, we would have to run an M/M/1
queueing model with a traffic intensity of 0.90, for 13,500,00 observation to obtain a
parameter estimate with 1% absolute error to the true expected value. We know that a
cumulative run mean of a sample path only approaches its true value asymptotically based
on the law of large numbers. In a simulation, the output sequence observations go through
several non-stationary distributions before they settle toward the steady state distribution.
The early observations of the cumulative run mean are the result of individual random
observations that may not be representative of the asymptotic stationary distribution.
Accordingly, the distribution associated with each estimate observation may change. These
changes in the distributions are non-stationary or transient distributions. The period it
takes the cumulative mean to settle to one where the expected value is the true mean has
become known as the warm-up period. Once the cumulative mean begins to settle into
an apparent stationary disposition, I consider the process to be in steady state.
Theoretically, steady state is the asymptotic state of the system. Since we cannot truly
attain an infinite simulation run, I consider steady-state to be that point in which the
simulation output sequence appears to be a covariance stationary process. I use the

definition for covariance stationary from Law & Kelton [20].




My=p fori=12,... and —eo< [l <00

0,»2:62 fori=1,2,..... and 02 < j1 <o

and C; ;, ; = Cov(X;, X, ) is independent of i forj =1,2,.....

The transient period is one major reason for bias in the simulation end estimate. The
transient period is a direct result of the simulation beginning in conditions that are not
representative of the true stationary asymptotic distribution. The major problem is we have
no idea how long a transient period will be. The transient period may vary significantly
among sample paths. We know by the Law of Large Numbers that we can get an estimate
closer to the true expected value the longer we run a simulation model. Since this is
computationally inefficient, we must consider how to get the most precise and accurate
estimate from the data we have. Consider the bias of the estimate resulting from incorrect
initial conditions to be initialization bias. 1 concede that with a finite run length there
will exist some bias of the estimate, however, I believe I can control the bias of our
estimator regardless of the initial conditions. Researchers have developed several methods
in attempting to control the bias based on the initial transience.

One method to minimize or eliminate initialization bias, is to set the initial conditions to
those representative of the stationary long run distribution of the system, before a run.
This is often impossible since the stationary distribution is unknown. If I could select an
initial condition from the steady state distribution of the desired performance parameter,
then there would be little need to simulate.

I can set the initial conditions of a system either deterministically or stochastically.
Kelton[17] explores both methods. Deterministically setting the initial conditions sets a
constant value such as the mode or value near the mean and executing the simulation with
these set initial conditions. This should shorten the transient period and ultimately provide
a better estimate than empty and idle initial conditions.

The problem with setting the initial conditions deterministically is it ignores other

possible states of the system. Kelton demonstrates how using geometric distributions to




stochastically set the initial conditions provides a more representative analysis of the
system. Whitt [40] develops approximations for the steady state distributions of the
number in the queue and system. Using the approximations to stochastically set the initial
conditions should give us an end estimate closer to the true expected value than an empty
and idle system.

Two methods to produce independent observations of the value we are trying to
estimate are Batch Means and Replication/deletion. (See Chapter 3.) The batch means
method provides us with a way to derive the variance of our estimator, using only one long
run to produce the point estimate. Note that the average of the batch means is our estimate
of the true expected value. This is also the cumulative run mean. Iconcede that a longer
run has a higher probability of going through the transient period than independent
replications. However, we have no idea how long a transient period is. One long run may
result in a more biased estimate than a point estimate across independent replications. For
this reason, I endorse setting the initial conditions across independent replications. This
allows us to control the probabilistic nature of what the system sees as its initial condition
and allows for more accurate and precise statistical analysis of the output data.

Another method to control the initialization bias is to truncate a portion of the sample
data. The remaining data provides our point estimate. A finite computational budget may
never get us through a transience phase. This can ultimately result in an estimate that is
neither accurate nor precise; even with truncation. Additionally, when we truncate an
observation from a sample data set, we completely change the characteristics of the sample
mean. We could conceivably change the distribution as well as the expected value of the
data set after a truncation. For this reason, we must consider what the ultimate goal of a
simulation is. I consider that accurate information for a decision making process is the
ultimate end purpose of a simulation. For this reason, I consider anything short of a
precise and accurate point estimate to be not very useful.

We can attempt to manipulate the data to be more representative of steady state by




eliminating transient observations in a sample data set. Several researchers have developed
methods to truncate initial transient observations. The goal of all heuristic methods is to
obtain a more precise and accurate long run performance estimate. Heuristics by Fishman
[6], Welch [35], Conway [5], Gafarian [7], Kelton & Law [15], White [36] and others
differ in their approach to control the initialization bias, but all incorporate some form of
truncation. Most truncation heuristics require pilot runs to determine the characteristics
of the output data and an estimate of the truncation point. The Welch [35] Plot allows us to
visualize the transient period across pilot runs and obtain a "guesstimate" of the average
warm-up period, based upon these pilot runs. The cumulative run means averaged across
pilot runs gives the simulator a visual clue of where the apparent covariance stationary
phase begins. At that point, the simulator would clear his statistic (or truncate) and begin a
new estimate. If these pilot runs were anomalies, then we could possibly choose an
incorrect truncation point. The Welch Plot does allow us to see when the cumulative run
mean appears to settle into a covariance stationary process. We must not lose sight of the
fact that this is a plot across replications so it is merely an estimate of the average warm-up
period. Each simulation sample path has its own unique transient period. We must
consider this in our analysis. Pilot run heuristics do allow us to gain insight to the system
and then use this knowledge to run our experiments. Nevertheless, the waste of

computational budget time is a shortcoming of this method.

1.4. Overview of the Methodology
Fishman [6] discusses the penalty of increased sample variance we may incur from
truncation, even though we may see a decrease in the initialization bias of a simulation

estimate as a result of truncated data. He recommends using the mean square error as an

examination of this truncation penalty. MSE = (X — 6)2 +0?, where X is an estimator of
the true expected value, 6, and o2 is the variance of the estimator. Fishman used the

sample mean as the true mean in his calculation of the mean square error (MSE);




—\2 . . =.
MSE = (X,. —X ) + 02, where X; is the observation of the cumulative mean, X is the

sample mean, and 62 is an estimate of the variance of the estimator. I consider using the
Whitt [40] approximation for the steady state expected wait timé in the queue as the true
mean and bootstrap off Fishman's MSE penalty examination.

Modifying on Kelton's[17] initial conditions study and Fishman's MSE idea, I
provide new methods of point estimation of waiting time in the queue using proven
accurate approximations to assist in the estimation process to stochastically set the initial
queue length and then truncate the output data at the point where the minimum estimated
MSE occurs, thereby minimizing the truncation penalty. I then calculate an estimate from
the remaining data.

I used the Extende, simulation package on a Macintosh Quadra 840AYV for this

research.

1.5. Purpose of this Research

Several significant reasons which support this research include:

i) If I can put together a process for queueing systems which produces a good
approximation of steady state parameters prior to a simulation run, I can drastically reduce
the time used to develop and construct models, execute the simulations and collect data.
This could ultimately equate to monetary savings in business.

ii) Using design criteria of the system to give us first and second moment
information of the proposed system, I can intelligently use this information to set initial
conditions from the approximate steady state distribution . This will ultimately allow us to
eliminate pilot runs.

iii) If I can successfully control the initialization bias and variance through
minimizing the mean square error, I can automatically produce the best possible estimate

from each sample path.




iv) Portable code allows the algorithms herein to be adapted by any simulation
package or any other research student.

v) This method will ultimately provide a decision maker with more precise and
accurate information.

vi) This research presents several new truncation rules to use in simulation

modeling.

1.6. Organization of Thesis

Chapter 2. is a review of literature devoted to initialization bias in simulations as
well as queueing approximations. Chapter 2 provides the theoretical, but more so, the
technical background and explanation of the significance of the initialization bias problem.
Chapter 3 is the thesis methodology. It describes setting the initial c;)nditions;
stochastically and deterministically. It provides the reader with a detailed explanation of
the heuristics that are used in the experiments and the design of the experiments
themselves. Chapter 4 is the results and analysis of the experiments described in Chapter
3. I perform batch means and replication/deletion analysis. Chapter 5 is a review and
evaluation of my research and a discussion of possible future research topics. While I have
not included the ModLg code I wrote for this thesis, I have included the algorithms in
Appendix A. This will allow anyone who desires to follow on in this research topic the
flexibility to use any computer language. Additionally, the actual Extende models are
available if one desires. Appendix B is the results of my experiments in detail. Appendix
C is a glossary of some of the terms I use in the thesis. They are presented to clarify any
confusion that may arise. The thesis concludes with an extensive reference list at Appendix

D.
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CHAPTER 2. REVIEW OF RELATED LITERATURE

Initialization bias has received a great deal of attention in the simulation community.
Techniques or heuristics have been developed which attempt to minimize the statistical bias
associated with the initial transient phase. This chapter introduces the reader to the problem
of initialization bias. It then reviews ways to set initial conditions prior to a simulation run,
test for initialization bias after a simulation run, and reviews heuristics for dealing with the
bias through the truncation (deletion) of the transient phase biased data. Finally, there is a
discussion of queueing approximations and how we can use the approximations in a point
estimate process.

I categorize the topic of initialization bias into three categories: i) setting initial
conditions, i) test for initialization bias in simulation output, and iii) controlling
initialization bias. This chapter presents a literature review of the research in these
categories. While there is ongoing research in controlling initialization bias using other
methods (time series methods and others), I focus on control of initialization bias through

truncation heuristics.

2.1. Setting the Initial Conditions in Simulations

In an attempt to minimize the bias associated with a nonstationary process, we can
set initial conditions which will reduce the transient phase and thereby reduce the bias.
Intuitively, one of the first questions we ask when we build a queueing simulation model
is, "Should the state variables of the simulation be started at 'empty and idle' or front
loaded to an initial value?" If the answer is to front load, the system, then immediately we
would need to know at what value(s).

Initial conditions can be set in two ways: deterministically or stochastically. While
almost every reference used in this review touches on the topic of setting initial conditions,
Kelton [17] focuses his paper on this topic alone. He explores the best stochastic and
deterministic ways to set initial conditions in replicated simulation runs. Kelton uses

replications rather than one long simulation run with batch means because the method is
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extremely simple and replications produce independent, identically distributed observations
of a performance parameter. The one shortcoming of replications is each run has to go
through the initial transient phase; however, Kelton believed that the advantages of
replications outweighed the shortcomings.

Setting initial conditions in a deterministic manner refers to setting each replication
in an identical state. Wilson and Pritsker [42] determined that setting the initial conditions
at a value near the mode of the steady state distribution reduced the transient phase. Kelton
and Law [15] determined in several queueing models that setting the initial conditions at a
value close to the steady state mean "induced comparatively short transients." The problem
with both approaches is that some prior knowledge of the mode or mean would have to be
available. This at the very least would require a single pilot run, with no guarantee that the
output would be the correct value.

If it were possible to set the initial conditions from the steady state distribution, then
there would be no transient phase. This is nearly impossible and extremely improbable.
Accordingly, Kelton [17] explores the use of maximum entropy to determine a probability
distribution to select initial conditions from. The two distributions Kelton ascertains
through the maximum entropy process are a Uniform distribution from 0 to "m", and a
Geometric distribution with parameter p; where p= ), and visa "guess" value of the
mean. Kelton points out, that you must make some educated arbitrary selection of input to
the system (m or V), in using the Uniform and Geometric distributions. However, this
educated arbitrary selection is now a value of a parameter of an initial distribution, rather
than a deterministic value of the steady state. If we select a deterministic value incorrectly,
then all replications will be off accofding to this value. However, the parameter associated
with a distribution allows for a better probability of the correct initial condition to be
established which in turn reduces the error. As in the deterministically set initial
conditions, one would use pilot runs to get a better idea of the parameter values.

In evaluating deterministic versus stochastic initial conditions, Kelton used three
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criteria: i) Plots of expected transient response (or an estimate of) as a function of discrete
time; ii) The percent bias of the expected value of an estimate with the steady state mean;
and iii) The time required to attain steady state. Kelton performed this process on three
queueing models (M/M/3, M/E4/1, E4/M/1), a time sharing computer system and a
manufacturing model, to show the applicability for a more complex system. In each
system, running a pilot run and then setting the initial conditions using the Uniform or
Geometric distribution methodology had a better reduction in the bias of an estimate than
using a deterministic initial condition. In fact, in the manufacturing model, the bias
associated with the deterministic approach had a bias of 39% while using the uniform
distribution to set the initial conditions per replications reduced the bias by 60%. Kelton
does concede that deterministically setting the initial conditions to an optimal value is better
than a stochastic method. In Kelton and Law [15], the authors show that the optimal
deterministic value in queueing simulations is larger than the mean and exceeds the mode.
They also suggest that determining an estimate of the mean and initializing at a value equal
to or greater than this mean value is better than the mode. One must note, however, that it
is nearly impossible to determine the optimal value, and the stochastic method is a safer
way of initialization.

Currently, there is research on how to approximate deterministic values as well as
stochastic distributions. There is the hope that using an approximated stochastic process to
set initial conditions in a simulation will drastically reduce the transient phase and ultimately

produce a "good" statistic.

2.2. Truncation Heuristics in OQutput Analysis

While there is ongoing research using time series methodologies and other ways to
control initialization bias, the most widely used is some form of deletion or truncation rule.
Truncation rules are heuristics which attempt to delete a portion of the simulation run where

the transient bias is most severe. This normally occurs at the beginning of the simulation
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run. Going from the transient phase and reaching the steady state level of the run is known
as a warm up period. The truncation heuristics attempt to determine at what point "steady
state” occurs. At that point, all previous observations are discarded and the remaining data
is used in the estimate.

In 1978, a comprehensive paper by Gafarian, et. al [7] evaluated the most
commonly used initialization truncation heuristics. These truncation heuristics are known
as; i) The Conway Rule (R.W. Conway); ii) The Modified Conway Rule; 1iii)
Crossing of the Mean Rule (G. S. Fishman); iv) Cumulative Mean Rule (G. Gordon);
and v) The Gordon Rule (G. Gordon). The conclusion of this paper was that all these
heuristics performed badly. However, the Gafarian study used a precision of zero
tolerance when estimating the expected value (in this case queue wait time). Intuitively,
one can see that the problem with this analysis is that the only way the precision of an
estimate is approximately zero is if the simulation run length approaches infinity. Had
Gafarian used a confidence interval to test for a desired precision half-width, they would
have seen that the heuristics do perform a service in simulation modeling. The evaluation
criteria that Gafarian, et al used in their experimentation were: i) Accuracy (The ratio of the
expected value of the estimate and the true value. If the value is close to 1 then the
heuristic is accurate); ii) Precision (A measure of the variation. If the precision measure is
close to 0, then the heuristic is precise); iii) Generality (The heuristic works well across a
variety of systems); iv) Cost (Expense in computer run time the heuristic takes); and v)
Simplicity (A heuristic which is easily used by the average user of large scale simulations).

Similarly, Wilson and Pritsker [41] [42] review and evaluate the above mentioned
heuristics. They used the same criteria as Gafarian, et. al. to evaluate the heuristics, but in
their research, Wilson and Pritsker applied an initial condition rule first and then evaluated
the heuristics. Where Gafarian, et. al. did not consider the use of confidence intervals,
Wilson and Pritsker do. They estimate the MSE and develop a confidence interval around

the estimator. Wilson and Pritsker found in many of their experiments that the truncation
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heuristics did in fact reduce the bias associated with the initialization. However, the MSE
increased. This meant that the variance increase was indeed more significant than the bias
reduction. As I stated earlier, they determined the mode was the best deterministic setting
of the initial conditions in a simulation to reduce the transient period and thereby control the
initialization bias.

Other researchers have published papers outlining their own heuristics. They
include Law & Kelton's [21] Regression Based Algorithm, Snell and Schruben's [31]
Weighting Simulation Data and White & Minnox's [36] Confidence Maximization
Procedure, and Glynn & Heidelberger’s [9] control of initialization bias in parallel
simulations.

The following pages give a brief synopsis of each truncation heuristic and,
hopefully, provide the reader with thought provoking topics. We must remember that each
rule is indeed a heuristic, the ultimate goal is to acquire a better estimate of a desired
performance parameter without the expensive computational cost of an exfremely large run

length.
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Conway Rule (Conway 1963)

Basic Process

Truncate a series of observations until the first of the series is neither the
maximum nor the minimum of the remaining data set. This point is the
truncation point.

Pros Extremely simple to apply to an output sequence.
Cons Underestimates the truncation point badly for most cases (Wilson & Pritsker)
Comments | A run length of 5 is highly improbable to reach steady state. The heuristic is
an attempt to determine what point to delete data to get a better estimate. A run
length of 5 is hardly enough to produce a possible point. As such only 1 out
of 100 runs with run length = 5 was successful in detecting initialization bias.
Heuristic Modified Conway Rule (Gafarian, et. al., 1978) B

Basic Process

Continually look backwards from the simulation output to find the first
observation that is neither a maximum nor a minimum of all the previous
observations. This point becomes the truncation point.

Pros

The run continues until the criterion is satisfied. No run length needs to be
predetermined.

Cons

1) There exist the possibility that every observation is deleted except for the
last observation. At this point the estimate may be good, but the variability
will be significantly large.

2) Similarly, there exist the possibility that no data is truncated. This does
not mean that no bias exists. Therefore your estimate is still biased to some
degree.

Comments

Heuristic

This process was modified by Gafarian et al. The evaluation was once again
skewed with a self-fulfilling prophecy of the inadequacy of the heuristic. In
evaluating this heuristic, Gafarian, et al replicate a maximum of 10 times.
Statistically, if one were attempting to get a good estimate of a mean value
using replications, then one would have to use a minimum of 30 replications.

It would be interesting to see their evaluation with more replications.
Crossing of the Means Rule (Fishman, 1973) ‘

Basic Process

Looking backwards at the observations, comparing a cumulative mean to the
observations, the truncation point becomes the designated number of
allowable crossings of the cumulative mean determined prior to the simulation
run. The greater the value allowed for crossing the mean, the more likely the
initialization bias will have been resolved by that point.

Pros

Produces a good estimate of the desired statistic.

Cons

1) Extremely conservative rule which unnecessarily deletes data. This results

in higher variability. The precision of the M/M/1 model with p 2 0.9 is closer
to 1. Closer to zero the better.
2) It overestimated the truncation point in most cases where the traffic

intensity, p, was low.

Comments

A conservative rule such as this may in fact eliminate bias but have a variance
that is large. The mean square error may also increase because the reduction

in bias is offset by a larger increase in variance.

Table 2.1.

Synopsis of Related Truncation Heuristics
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Cumulative Mean Rule (Gordon, 1969)

Basic Process

Prior to a simulation run, determine the number of replications and the run
length, all of which remain constant. Additionally predetermine the initial
conditions. Plot the cumulative mean over the plot of each run and select the
observation which appears to be stable.

Pros Mathematically tractable and easily implementable
Cons Large truncation points involved excessive computing cost.

Comments |1) Extremely sensitive to the number of runs and the run length. The more
runs, the closer the cumulative mean approaches the true mean. The shorter
run lengths do not mask the transient phase as easily as a longer run length.

Heuristic Gordon Rule (Gordon, 1969)

Basic Process

Similar to the Cumulative Mean Rule, the Gordon Rule plots the estimate of
the sample standard deviation versus the number of observations, n, on log-
log paper and selecting as the truncation point that point where the plot
steadies to a straight line.

Pros Visualization is easiest form of heuristic. A program can be written to
automatically plot the Log-Log plot.
Cons Large truncation points involved excessive computing cost.
Heuristic Moving Average Rule (Welch, 1983)

Basic Process

Using a visual representation of the output, one can use a moving average to
calculate the average of the most recent "k" observations at each data point.
The user selects the size "k". This smoothes the fluctuations in the output
response and visually depicts the onset of steady state: The truncation point.

Pros Applicable to all models, not just small well behave simulation models.
Cons Basically reduces the sample size by n/k
Comments | The Welch Plots are the most widely used visualization of steady state and
truncation selection. The problem is as with most heuristics, you have to run
a pilot run of the simulation to ascertain the characteristics of the output.
Heuristic Regression Based Algorithm (Law & Kelton, 1983)

Basic Process

Make several independent replications and collect the estimate over each run
into "m" observations. Batch these observations and compute a batch mean.
Fit a straight line through the batch means and check for zero slope. At that
point, steady state has occurred and it becomes your truncation point.

Pros

1) Mathematically tractable and easily understood.
2) Performed well for a variety of queueing models.

Cons

Basically only good for monotonic processes. If one does not know the
stochastic characteristics of the process, then using this method might be in
error. Additionally, it requires several pilot runs to get an estimate of the
truncation point and run length.

Table 2.1.

Synopsis of Related Truncation Heuristics (continued)
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Heuristic Weighting Simulation Data

Using a least squares method (ordinary or generalized),
Basic Process

Pros Snell and Schruben's experiments compare the least squares result to that of
the analytically derived Conditional Means Square Error. (Unlike Fishman,
1972, who proposed minimizing the run mean square error) The Mean
Square Error focuses not only on the bias, but also on the variance. By
minimizing bias, one does not guarantee a good estimate of a performance
parameter. Schruben and Snell attempt to find optimal point where the
conditional mean square error is minimized.

Cons 1) Not as mathematically tractable as Law & Kelton's Regression Heuristic.
2) Calculating the Mean Square Error requires estimating both the bias and
the variance of the sample statistic.

Heuristic Confidence Maximization Rule (Wte & Minnox, 1992)

Minimize the half width confidence interval of the observed sample mean.
Basic Process | The point of the simulation output that does this is the truncation point.

Pros 1) Sound basis for the statistical analysis.
2) Easily computed and possible to attach to simulation language.
Cons 1) Tests performed were only on queueing models

2) Assumption that at the onset of steady state, the confidence level peaks is
yet to be proven.

Comments | White and Minnox discuss how many heuristics have a limited scope, yet their
experimentation of their rule is only on queueing models, however the sound
basis for the minimization of the confidence interval half-width makes it
intriguing to test the rule on more complex systems.

Table 2.1. Synopsis of Related Truncation Heuristics (continued)

2.3. Testing for Bias

If a system's initial conditions are representative of the steady state conditions, then
it is possible that no bias is present. This is rarely the case. It is necessary to have a
method to see if any bias exists in the output of a simulation model.

Schruben [30], published a methodology for detecting initialization bias in
simulation output. He developed a method using the theoretical applications of ¢—
mixing (phi-mixing) and Brownian Bridge. These are concepts that, although
grounded in sound probability theory, are difficult to understand and implement for the
average simulator. The idea is that the simulation output is basically a continuous time

stochastic process. The unknown function of a mean performance parameter represents the
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possible shift in the output mean. Schruben applies the theory of dependent stochastic
processes assuming that the random variable X; is stationary and (p—mixing(phi-mixing)
with a finite variance. This allows Schruben to use the central limit theorem to obtain a
limiting distribution of the desired test statistic. With these assumptions, Schruben uses a
Brownian Bridge as a limiting stochastic process on the interval starting at 0 and returning
to 0. Schruben points out that the Brownian bridge has four significant properties; the
characteristics of which converge asymptotically the partial sums of deviations about the
mean of the Brownian Bridge process. From this basis, Schruben develops the
standardized test sequence T, (t) =[m]S, ([tn])/ (w/%); t €(0,1], with To(0) = 0.
Schruben's test procedure basically evaluates whether or not a sample estimate would be
unusual if the output contained no initialization bias. The idea is that a large positive
maximum value of the scaled test sequence Ty(t) is unusual if no negative initialization bias
is present. Schruben's next step is to develop the equations to estimate the probability that
a test statistic, Ty(i), is more unusual than the observed statistic. If this is the case, then the
associated probability (denoted as & by Schruben) is larger than the probability of no
unusual test statistic. Smaller values of & indicate that the resulting simulation output is
highly unusual for an unbiased run. The test procedure step by step is simply:

1) Find §, §=0T,(f), where f is the time of the observed first maximum.

2) Compute &2 and v (estimate of the variance/degrees of freedom)
3) Set t =% and compute h (hypothesis test)
4) Compute o
5) Reject a hypothesis of no negative bias if a<a
Schruben experiments his test for initialization bias on five complex systems. In all
experiments the test worked well. While there is always the possibility of Type I and Type
11 errors in rejecting or accepting a hypothesis, the test's performance was such that this

should not be a major concern. Schruben does point out that if Type I or Type II error are
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a major concern, one must decide to increase the run length or truncate some data. These
areas are another topic in the search for control of initialization bias.

Expanding on his earlier work, in 1983 Schruben and Singh [29] present an
optimal test for initialization bias in simulation output. While this test was created as an
attempt to control bias, it has predominantly come to simply be used as a test for
initialization bias in simulation output after one uses a truncation heuristic. In fact,
truncation of some data is an assumption Schruben uses to show the power of the optimal
test. The bias test uses statistical theory (likelihood ratios) to derive the optimal form. The
test is simply whether or not the observed output value is consistent with the hypothesis
that the mean does not change throughout the simulation run. Rejecting this hypothesis
means there is bias present in the output.

Using the Neyman—Pearson Lemma, Schruben & Singh derive the likelihood ratio
for the hypothesis. Using the concepts derived in his 1982 paper concerning the sensitivity
of the cumulative sums, Schruben & Singh point out that the sum is highly sensitive to
nonstationary means. Using a weighted average, Schruben and Singh develop the optimal

testtobe: T=Y;_,ckS, withc, =a,—a,,,. Thatis, the test statistic, T, is the

weighted average optimal test statistic, S is the cumulative sum process

S, =Y —Y, whereY, = 1/ kz‘k Y,, and a; are the selected weights which reflect the

=17
changes in the output mean due to initial conditions. If a; = 0, then no bias is present in the
output. Since in an actual application the "a's" are not known, one cannot determine the
optimal value for a. One does know that in a stationary process, ¢, = 0. Additionally, in
simulations such as queueing systems, one can suspect the behavior of the transient mean
(positive or negative bias) and select a weight accordingly. Schruben uses ¢, =1- (k/n)
in his experiments, which is optimal for a quadratic mean function. While this test statistic
is sound, it does not consider the variability of the stochastic process. Additionally,

Schruben's test can lead to erroneous inferences based upon its results. If the finite sample
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data set appears to settle into a stationary process because of its run length, then the
Schruben test may show, after truncation, that the estimate has no initialization bias when
in fact it could be a significantly biased estimate.

Schruben and Singh describe a method to estimate the variance of the T statistic:
Var(T) =n’c?/45. Since 62 is unknown, we must estimate it from the simulation output.
While Schruben and Singh do not perform the estimate of the variance, they do propose the
use of either the autoregressive process to estimate the variance or the batch means process
on the output. Using the estimate of the variance and the weighting test described above,
Schruben and Singh derive an estimate of T which is reasonable and performed well in all
tests. The final estimate of the test statistic for initialization bias is:

T=(va5/n* 6)55.(1-kin}(Y, - ¥,). The step by step process using this test for initialization
bias is:

1) Compute & and the degrees of freedom using either batch means or
autoregressive methods |

2) Compute the test statistic T.

3) Using the t-distribution tables, reject the hypothesis that the mean does
not change if T>t (d, or), where d is the degrees of freedom and o is the desired
confidence level. (i.e., o = 0.05 for confidence level 95%).

We can see that this optimal test for initialization bias is more readily
understandable. In fact, it has become the norm for testing for initialization bias in
simulation output.

Another test for initialization bias was presented in 1989 by Vassilacopolous [34].
Vassilacopolous' test is based upon ranking the simulation observations. Like Schruben
[30], Vassilacopolous assumes the output process in the simulation is stationary and Q¢—
mixing with finite variance. Vassilacopolous ranks tied observations with the same value

for an equal rank. The rank definitions of the observation xx with N observations is:
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-1, x<0
S(x, —x;) where S(x)={ 0, x=0.
1, x>0

Mz

R, =

i=1

Vassilacopolous next develops a new process defined as: U(k) =2W, — k(N +1);

k
k=12,..,N,where W,=> R, and U,(0)=0. The test for initialization bias is

j=1
Cy = max|Uy (k)| This is the two-sided test for initialization bias. Vassilacopolous also

1sk<N
develops the test for positive and negative initialization bias. Once again, like Schruben
[30], Vassilacopolous uses the Brownian bridge to determine the approximate size of the
critical regions of the test from the null hypothesis probability distribution.
Vassilacopolous derives the limiting distribution for the test to be
f)gflsxﬂB |} (3/N(N+1)) l/ZCN. This two sided limiting distribution turns out to be the
same as the two-sided Kolmogrov-Smirnov goodness of fit test statistic. This means that
Cy is already determined. The one sided tests are also known. From this, Vassilacopolous
shows the significance probabilities associated with Cn. Vassilacopolous' step by step
process for initialization bias testing is:

1) Find the ranks of the observations Ry and calculate Un(k)

2) Find c = max |Un(Kk)I and significance probability, &,associated with it.

3) Reject the hypothesis that no initialization bias is present if o<

Unlike Schruben's extensive testing on complex systems, Vassilacopolous

performs experimentation of his test on the simple M/M/1 and M/M/4 queueing models.
This questions the power of Vassilacopolous' test. Ma and Kochar [22] compare
Vassilacopolous [34] and Schruben and Singh [29]. One significant advantage of
Vassilacopolous' Rank Test is one does not have to estimate the variance of the stochastic
process. For this reason and its simplicity, Ma and Kochar believe that Vassilacopolous'
test is more likely to be used by the simulation community. In comparing actual
implementation of the tests, Ma and Kochar experimented with each test using simulation

runs with no truncation, but biased data inserted, and simulation runs with truncation and
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biased data inserted. They found that both tests performed satisfactorily. Schruben's
optimal test was able to determine more biased runs than the rank test. Once again,
however, one must consider the ease of implementation and use of the rank test. Even
though the rank test does have some shortcomings, its advantages make it the one which
Ma and Kochar recommend. One thing that Ma and Kochar note affects both tests is that if
the variance of the stochastic process is larger than the size of the initialization bias it is
difficult to detect the initialization bias. To that end, they suggest that the variance be
reduced using batch means or replications.

Since I am considering a finite run length, I know the estimate will not achieve its
asymptotic true expected value. Accordingly, I concern myself with analyzing
stochastically setting the initial conditions and evaluating the performance of the truncation
heuristics to provide a more accurate and precise point estimate of the true expected value of
the performance parameter. I provide the tests for initialization bias discussion as one
which is related to my research. Additionally, the results of using approximation assisted
point estimation may have applicability in future research topics in testing a data set for

initialization bias as well.

2.4. Queueing Approximations

A queueing approximation allows us to perform a quick analysis of a system
without a simulation. Researchers have developed several queueing approximations that
allow us to perform this quick analysis. Tijms [32] devotes an entire chapter to this topic.
There are three basic methods for approximating the performance of a Queueing system.
(Gross [11]) They are process, bound and inequalities, and system approximations.

A process approximation is where "the actual problem is replaced by a non-
queueing one which is simpler to work with. The primary examples of interest are the use
of continuous-time diffusion models to solve queueing problems and the use of creative

probability arguments on random walks, stochastic convergence, and the like to solve
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heavy-traffic and nonstationary problems."3

A bounds and inequality approximation is one that attempts to take advantage of the
limiting values of a more accurate system to approximate the value of a system that does not
have the bound or inequalities needed to solve analytically. The approximation tries to
"multiply the bound by a fractional function in p that itself approached one with p."4

A system approximation attempts to use known systems to approximate the
performance of other systems. An example is using the M/E;/m model to approximate an
M/G/m system.

I focus my research on system approximations. In particular, I focus on two-
moment approximations for the waiting time in the queue. Tijms [32] illustrates the two-
moment system approximation for the M/G/m Queueing model. Whitt [40] develops two-
moment system approximations for the GI/G/m Queueing system using the analytically
tractable M/M/m Queueing system. Whitt's approximation allows us to easily calculate the
expected performance in a general queueing system. Whitt shows his approximations to be
accurate with average absolute errors of 10% to the true expected value for cases
considered.

I assume that a person designing a simulation model will have first and second
central moment information of the system arrival and service times. This partially defined
distribution is enough for us to use Whitt's approximations in my heuristics. Tijms [32,
p-295] does note, however, that the accuracy of an approximation degenerates as p
decreases. This is also the case for the Whitt approximations. Generally for a utilization, p
< 0.5, Whitt's approximations are not very accurate. I assume that a person designing a
system desires maximum efficiency of his system with as little idle time as possible. This
is not unreasonable, so I chose a utilization of p 2 0.9 for my experiments. Whitt's

approximations are limited to the GI/G/m queueing systems with m parallel servers and a

3 Gross [11], p. 423.
4 Gross [11], p. 420.
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First Come — First Served discipline. The approximations use four basic parameters:

2

i) the squared coefficient of variation for the arrivals ¢ =3?"'"—“‘-;
A{2

ii) the squared coefficient of variation for the service ! = Loy
iii) the utilization (traffic intensity) p=

iv) the number of parallel servers m;
Whitt uses the squared coefficients of variation instead of the variance because
"they are dimensionless and it is easily interpreted independently of the mean"3

The basic approximation used as the true expected wait time in the queue is:

E\W ( c2, ¢? )—( 2, 2 m)c§+c52EW
Qsricim \P> Ca» Cs» M =¢{p. ca. <5 2 Omimim

where ¢(p, CZ, csz, m)=

4(03—03) c2 2 +c?
———F ()| e | 2o mp | ci2d]
[ 4¢2 —3¢? (mp) 4c2 —3¢? 2 P e

2 2
Cg—¢C 2 2 2 2
(gz) J¢3(m,p)+( °§+3°32]‘P[C“ 5 ,m,p) casel

2¢2 —2¢? 4cy — 3¢ 2
2 2
&2 4+ ¢ 1 S ;Cs 21
‘P( E s’m’p]=

2,02
&%} 05‘3”331
2

ou(m, )

16mp

9,(mp)=1+y(m,p) where 7(m,p)=min{0.24, (I“P)(m—l)((4+5m)°"_2)}

¢,(m,p)=1-4y(m,p)

o) =0, (mplso | 2021

¢, (m.p)= nﬁn{l,mw}

This approximate value is enough to use in the truncation heuristic, but it is not
enough to use in setting the initial conditions. We could apply Little's formula to find an
approximate expected number in the queue and round the value to an integer to set the initial

conditions. As we discussed before, however, this would only be a deterministic initial

S5 Whitt [40], p. 115.
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condition that would ignore other possible states.

Whitt [40] provides approximations for the steady state queue length and number in
the system distributions. Like Kelton [17], Whitt uses the geometric distribution as the
building block for his queue length distribution. He then checks four different possible
cases of the squared coefficient of variation of the conditional queue length (queue length
given there is a queue), ¢2. These four cases result in unique algorithms for generating a

queue length.

The first case is when ¢? >1-E[Q, 1 Q, >0]_l +0.02. The queue length

distribution is a mixture of two geometric distributions on positive integers with pl, p2,

and vy that match the conditional expected queue length and the squared coefficient of
variation of the conditional queue length having balanced means. The approximation

equations for case one are:

P(C=k)=,(1-p,) e

k—1+(1—’y)p2(1—p2) k21

P(C>k)= Y(I*P])k +(1"7)(1_p2)k

ElQ 1Q >0
wherep = ml_1 > p. =m -L—L——l = ym = (1-y)m_, and

2 2 ? 2 2
1 0.5

y= |1+ 1-2|:c2+1+——1-——— 2.0
E[Q, 1Q; >9]

The second case is when cc2 —1+E[Number in Queue | A Queue Exists]—lls 0.02. The queue

length is simply a geometric distribution with p = m. The approximation CDF
equation is: P(C=k)=p(1-p) ' k21
The third case is applicable when
Elo.ra. >0 ), < 1 0.02.

2E[Q, 1 Q, >0 ST TEQuIQ a0 -1
The queue length distribution is a convolution of two geometric distributions. The first
distribution is across nonnegative integers with mean m; = (1—pj)/p; 2 0; the second
across positive integers with mean my = 1/pp 2 1. The approximation equations for case

three are:
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1’(C=1<)=k)ilp](l—pl)jpz(l—p2)k_j_1 k21

j=0

P(C>k)=1- $P(C

I
—.
=

2 my +1
((X+1)+[(x—l)2—2x2(l—c -—x"l)]os) :
my; = 5 P2=;1;

((E[QL 1Q, >0])° —1)

The final case is when ¢? > 5
2(E[Q. 1Q, >0])

. The equations for case four are

essentially the same as for case three with the exception:
_ (B[Qu1Q.>0]-1) ) 1

v 2 " m, +1
o (E[QLIQL>0]+1) L
2 = ) Pz—m2

The algorithms to generate a queue length from these four cases are at Appendix A.

The approximation for the distribution for the number in the system is:
P(Q=k—m) k2m+l
- p(k) 0<ks<m

P(N=k)
The p(k) is a truncated Poisson distribution with intensity o.. Whitt considers the
truncated Poisson distribution because the number of customers in the system for the
GI/G/°° Queueing system is asymptotically normally distributed. The Poisson distribution
is a reasonable discrete analog. Whitt notes that this approximation should work extremely
well for greater number of servers.
Whitt's derived approximations allow me to test the hypothesis that using the

approximation I can control the initial condition bias and get a more precise and more

accurate estimate even with a maximum of four servers.
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CHAPTER 3. METHODOLOGY

This chapter provides insight to my techniques. I first develop comprehension of
some critical topics, before I illustrate my heuristic methodologies. These topics are:

1) Replication/deletion and Batch Means methods for producing independent
estimates.

i) Variance reduction through Common Random Number and Synchronization.

iii) Estimators of a desired statistic.

I then discuss setting the initial conditions in a simulation. Next, I provide the
framework the truncation heuristics and show some interesting preliminary results from my
research. The last section of this chapter is an description of the experiments I used to

evaluate the performance of the heuristics.

3.1. Batch Means versus Replication Deletion

We know that a simulation output sequence is sequentially correlated. To
effectively analyze any estimator, we want to perform a statistical analysis upon our
estimator to create a confidence of our methodology. Accordingly, we want to try and get
independent estimates from a simulation model; from which we can perform statistical
analysis. There are two methods to create independent estimates from simulation output
sequences: Batch Means and Replication/deletion.

Batch Means is based upon a single long simulation run. The advantage of using
batch means is the sequence has to travel through a transient period only once. “Suppose
that we make a simulation run of length m and divide the resulting observations
Yy, Ya,....., Yy, into n batches of length k. (Assume that m = nk) Thus, batch 1 consists

of observations Yy, Ys,....., Yi, batch 2 consists of observations Y1, Yi+2,eeeees Y2k,

etc. Let )_’j(k) (Where i=L2,..., n) be the sample (or batch) mean of the k observations

Fin)=Z- 10 T e/

in the jth batch and let
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be the grand sample mean.”® The function )_’(n,k) becomes the point estimator for 6. The

idea is that the batch means will be far enough away from each other that the observations
will be independent. A major concern is whether or not a single run is long enough to
fully go through the transient period. Often we are constrained to a finite computer budget.
If the transient period is longer than the single long run, there exists the possibility that the
resulting ?(n,k) is extremely biased and the observations used to determine the estimate
are correlated.

Replication/deletion is easier to use and implement that Batch Means. Instead of
one long run, replication/deletion takes the estimates of several shorter runs to develop a
point estimate for 6. Consider Xj, X3,....., X, to be the end run sample means of our
desired performance parameter. These occur from z simulation runs. Each run has a
unique sample path. The result is » independent observations of what we are trying to
estimate. Our estimator for @ simply becomes X ()= 2i- 1X% . The problem with
replication/deletion is each replication must go through a transient phase and the run lengths
are shorter.

There is considerable debate whether it is better to use batch means for a point
estimate of replication deletion. I do not intend to debate this issue. I apply replication

deletion and batch means analysis to show the applicability to both methods.

3.2. Variance Reduction and Synchronization

To reduce the variability in our analysis, we attempt to synchronize the simulation
models by inducing positive correlation between the systems we are comparing. That is if
we are to compare one model to another, we must ensure it is under “like” conditions. In
this research, I focus on the estimation of the expected wait time in the queue. I compare
the stochastically set initial condition system to an empty and idle system. I do so by

implementing common random numbers (CRN). “To implement CRN properly, we must

6 Law & Kelton [20], p.554.




29

match up, or synchronize, the random numbers across different system configurations on a
particular replications. Ideally, a specific random number used for a specific purpose in
one configuration is used for exactly the same purpose in all other configurations.”’

When my simulation model initializes the random variables at simulation time 0, my
initial condition block stochastically generates a random initial number in the system based
upon Whitt’s approximate distributions discussed earlier. These “customers” each have a
unique service time. Additionally, a queue can exist at start up. To compare the estimate of
the stochastically set system to an empty and idle system, I need to perform two tasks to
ensure synchronization. First, I need to record only the wait time observations of those
“customers” generated after simulation startup. Secondly, I must ensure that the service
time the first generated “customer” in the empty and idle system has the same service time
that the first generated “customer” received after all the stochastically generated customers
have been served. Synchronization is critical in analyzing experimental results. Consider a
stochastically set initial number in the system is 5 for a single server queue. If you do not
synchronize the service times for the first randomly generated customer, it will receive the
first stochastically set customer’s service time. By synchronizing the service times between
the systems the estimate comparison of the wait in the queue now has no variability that
would have resulted in an unsynchronized system. To accomplish synchronization, I
recorded the seed value of the service time when the stochastically set number in the system
is finished being served. I then ensured the empty and idle system had the synchronized
service time for the generated customers by setting the initial server seed value to the
recorded value. In doing so I eliminated any variability that would occur by using different
service times in my comparison of stochastically set initial conditions models and empty

and idle initial condition models.

3.3. Estimators of a Performance Parameter

An estimator is a mathematical function which provides a point estimate value of a

7 Law & Kelton [20], p.617.
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true value. An estimate is the value an estimator produces, given an input. An estimator of
the expected value of a sample data set is typically the average of that data set. By the Law
of Large Numbers, as the number of observations approaches infinity, the sample mean
will asymptotically approach the true expected value; é,:l, 6. A problem arises when the
observations used in the estimator are sequentially correlated. This is typically the problem
in a simulation output sequence. In queueing simulations, a large observation is typically
followed by another large observation. This makes it difficult to estimate the variance of
the estimator.

I developed several estimators of the expected wait in the queue using Whitt’s
approximation for the steady state expected wait in the queue. The estimators are in
essence an average. What makes them different from a cumulative run mean is the heuristic
seeks out “better” sub-sequence of data to provide my estimate. These estimator, thus, are
functions of a random truncation point in the output sequence. Table 3.1, on page 38,

lists the estimator for each heuristic.

3.4. Initial Conditions

Setting the initial conditions in a queueing model may allow the simulation to have a
shorter transience phase. This is theoretically sound since it attempts to establish an initial
condition representative of the asymptotic state. Since we cannot achieve an asymptotic
state in a finite simulation run, simply changing the starting state from empty and idle to
another deterministic condition does nothing more than what the empty and idle condition
does at the outset of the simulation. It ignores other possible starting states. Some argue
that empty and idle is an asymptotic state. While I concede there is some probability of its
occurrence, assuming that it occurred at the outset with probability 1.0 may not be
representative of the asymptotic distribution across states. Additionally, assuming a non-
zero deterministic initial condition is not representative either.

Stochastically setting the initial conditions allows the model to draw from an

approximated distribution to set the initial conditions. The theory is, if the approximation is
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close to the true distribution, then across simulation runs, initial conditions are chosen
according to a distribution which is close to the actual steady state distribution. Kelton [17]
illustrates how we can use geometric and uniform distributions to stochastically set the
initial conditions with good results. Whitt [40] derives approximations for the steady state
number in the queue and in the system distributions. I use Whitt’s approximations in my

experiments.

3.5. Overview and the MSEAT Truncation Heuristic

As I discussed earlier, if we knew the true expected value of a performance
parameter before a simulation, then there would be little need to simulate. We rarely have
this knowledge of the system. We must know distributions in order to simulate. Often,
we make an assumption as to which distribution to use if we do not have historical data. ‘
We want to use as much apriori information as possible to ensure the output estimate is
both accurate and precise. I considered Fishman's [6] penalty of truncation using the MSE
equation. I believe we can use the minimum estimated MSE as a truncation point where the

minimum penalty occurs and results in a precise and accurate estimate.

X = More accurate estimate but with less precision thanY.
_ This equates to greater variance but less bias.
Y = More precise estimate but with less accuracy than X.

This equates to less variance but greater bias.
Figure 3.1. Target Estimate of Simulation Output

My methodology differs from other truncation heuristics, in that I assume no

knowledge of the system based upon pilot runs. Indeed, I eliminate pilot runs completely.
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The first and second moment information from the arrival and service distributions partially
specifies the underlying distribution of the estimated performance parameter. Whitt [40]
shows that derived approximations for the long-run distribution of the number in a system
and in a queue are quite accurate; with the worst absolute error being about 20%. An
approximation of even 20% absolute error to the true value can assist us in obtaining a
"better" estimate when compared to simply accepting a simulation run mean. I define the
term "better" estimate to be an estimate that is both precise and accurate. Figure 3.1.

illustrates how precision and accuracy may vary in sample data.

The estimated MSE,
~ 2
MSE = E[(e-e) ]
= Biasz[é]+Var{é]

where 8 is an estimator of 6, is one statistical computation that considers both

the accuracy (bias) and the precision (variance) of the estimator. An estimate of the MSE of
the estimator is:

MéE[é} . Biasz[é]-f- Var[é].
Bl?ls = 5(_—0 Vﬁr= 6-2 = Lil(T)z—

where 0 = the true mean and X is an observation of the estimate independent of other
observations You can see that not knowing the true mean precludes you from using the

MSE as a truncation heuristic. The best you can do is derive an estimate of the variance of
—\2
i[x.-x]

the estimator using the sample variance equation: $2 = £l . Assuming independent

n—

" —
., st &K . . — ,
data, then g% =—=! is an unbiased estimator for Var{X]. Bias and variance

T

measure two separate characteristics of an estimator. Bias measures systematic deviation
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from the true mean, whereas variance measures variation around the bias plus the mean."8

The goal is to make best use of the simulation output sequence in estimating the true
expected value of the unknown distribution.

I consider using the point approximation for the expected steady state wait time in
the queue Whitt [40] develops as the true analytical mean to compute an estimate of the

MSE. Using the approximate mean as the true mean allows me to compute an estimate of
) 2

. R A _gn [[Xl —eapprox]
the sample variance without the use of a sample mean. 6* ==—

~ i[}(i‘eappmx}z
This gives me as an estimate for the variance of the estimator ¢° = L_rﬁ—

At the minimum estimated MSE point,

n
2 (Xi~Bapprox )2
o fzdt

approx ) (n) ?

die = min[MASE] = arg min (—X—n,d—e

0>d20

I discard the previous data (truncate) and calculate an average of the remaining observations
as the point estimate. My final equation for the point estimator is 6= ,f_:i_, where "d" is the
point of minimum estimated MSE and X; is the "ith" observation of the parameter I am
estimating. I call this truncation heuristic Mean Square Error Approximation Truncation
(MSEAT).

Using the minimum estimated MSE as a truncation point allows me to do the best I
can from a finite run length output sequence in obtaining an accurate and precise estimate.

Figure 3.2. illustrates how the minimum estimated MSE truncation works. The
minimum estimated MSE point yields the truncation point. You can see that each sample
path has a unique behavior. The top left sample path has a truncation point at the 1999th
observation. The remaining data provides the point estimate. Likewise, the top right and
bottom sample paths have truncation points of 9706 and 913, respectively. Concerns I
have for my methodology are the strength and sensitivity of using the approximation as the
true mean. If the approximation has significant error to the true expected value, then the

point estimate of the performance parameter from truncation may be worse than a run

8 Fishman [6], p.787.
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Sample Path of Truncation Heuristic Sample Path of Truncation Heuristic
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Figure 3.2. Illustrations of Estimated MSE Truncation Heuristic

mean. To test this concern, I ran 41 experiments of 30 replications with 10,000 customers
exiting the system of an M/M/1 queue with common random numbers. Iused the true
analytical expected wait time in the queue as the initial approximation and then incremented
the value by +£0.01 absolute error to give an absolute error from 0 to 20% for both positive
and negative error. Note that Whitt’s [40] approximations reduce to the exact true M/M/1
values.

Figure 3.3 depicts the findings across the 41 experiments. The significant result
was that even with an approximation absolute error of 20% the truncation estimate was
more precise and accurate than the run mean with no truncation. The fact that the average
across 30 sample paths could not produce an estimate within the 95% confidence lower
bound of the approximation heuristic is even more significant. This is attributable to the
negative initialization bias M/M/1 queues experience when starting with empty and idle

initial conditions and the extremely long transient period associated with the M/M/c models.
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However, this test also shows the significant effectiveness of using apriori information to

our advantage in an approximation assisted point estimate.
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3.5.1. MSEAET Heuristic

I noted that the strength of the approximation in the bias and variance equations
forced the estimate towards the approximation value. I considered "softening" the strength
of the heuristic to let the sample data have a more determinant impact on the estimate. I felt
that maintaining the bias equation and using a different equation for the variance would
lessen the strength of the heuristic, but still allow for better precision and accuracy.

Since the power of the heuristic appeared to force the estimate toward the
approximate value, I considered using this power to my advantage. If I knew whether the
approximation had a negative or positive error to the true expected value, I could weight the
approximation to negate the direction of the error. Ido not believe this is information the

user could provide. For my initial E,/E,/4 experiments with p = 0.90, I input the absolute
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error of the approximation to generate two new approximations that I then used in a

modification of the MSEAT heuristic The approximation equations are:
Bupprox, = Oupproxs  Oupproxy = Oapprox +|ApproxError|,  Ouppror, = Oupprox —|ApproxError|;
I then found three separate truncation points as I did in the MSEAT heuristic and
calculated an estimate from each truncation point. I then took the average of these estimates

as my point estimate. I call this heuristic the Means Square Error with Approximation

Error Truncation (MSEAET) heuristic. Intuitively, we can see for my initial E,/E,/4

or 6 is the true expected wait in the queue depending on

experiment that either 0 pproxy

approx;
the direction of the approximation error. I am concerned that the resulting estimates will be
biased in the direction of the approximation error since this heuristics weights the direction
of the error. Nevertheless, it has sound justification for investigation. Since the size and
direction of the error are information the simulator would not know, I use 0.20 as the
approximation error for the remainder of my experiments. I use this value since I have
already shown that a 20% absolute error can produce a “good” estimate and Whitt’s
approximations are, on average, more accurate than this.

The final equations for the MSEAET heuristic estimator are:

n n n
2 X; 2 X; 2X; AAA
(3 _ i:d,+1‘ o = i=d2+ll B = i=d,+1’ 3- 6,+0,+ 0,
1= 73 2= Ty 3= = s
(n-dy) (n-dy) (n—ds) 3.0

where d;, dj, and d3 are shown in Table 3.1.

3.5.2. MSEASVT Heuristic
White[36] describes a heuristic of minimizing the sample half-width in simulation
output data as a method of truncation. While this indeed maximized the precision of the
estimate, I found that using it to determine an estimate of the expected wait time in the
queue occasionally resulted in extremely biased estimates when the sample paths had small
and similar observations at the tail end of a simulation. I considered that using the White's
sample data precision with the original approximation bias equation would lessen the pull

of the truncation heuristic to the approximation. I combined White's half-width
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equation with the approximation bias equation in estimating the MSE to determine a suitable

no2 =2 .
XX -(n-d)X, ,

. . A — — ’ - 0
truncation point: | MSE = (X,,,d -6 ) +i=l 3 , where "d" is the truncation
approx (n - d) (n _ d)

point.

3.5.3. MSESET Heuristic

One final heuristic I considered is applicable to any simulation. The idea is simply
to perform a back-end analysis of the sample data by calculating a run sample mean and a
standard error using a desired o level from only the last half of the sample data. I used the
sample means from the second half of the output sequence as the true mean and perturbed it
by the standard error which gave me three values to use in my estimation of the MSE.
Similar to the MSEAET, I then analyze the output sequence for the point with the
minimum estimated MSE and find three truncation points. I then calculate three estimates
of the wait time in the queue and use the average of the three as my point estimate. For my
experiments I used an o of 0.10 to calculate a 90% confidence standard error.

Using the last half of the sample data to compute a “true” expected value assumes
that the run length was long enough that the transient périod occurred in the first half of the
sample data and the second half of the output sequence is more representative of the steady
state distribution. While this may not be the case, it does lend itself for interesting debate

and a desire on my part to see what happens. Table 3.1. summarizes the heuristics.

3.6. Experiments Overview

To test the heuristics, I set up a series of non-standard queueing models with a
traffic intensity p 20.9. Iused models other than the M/M/c model since the Whitt
approximations reduce to the M/M/c case. To check my results T used Queueing Tables and

Graphs, by Hillier and Yu and Tables for Multi-Server Queues, by Seelen, Tijms and Van

Hoom. Ianalyzed the models stochastically setting the initial conditions and then, with

recorded seeds, empty and idle. I performed this analysis for batch means and replication
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Truncation Point (d) Expected Value
Heuristic Equations Estimator
dyye = aIg Min Bias’ [ ]+Vﬁr[é]
Biﬁs[é] = )—(d,,.—eappm iX.-
é - i=d+1
MSEAT vif#] - 5 - 3 (x- e,,,,,,,.,,) (n—d)
(n—a)’
M/\SE[é] = (—X.d,n —8,,”,,,,,)2 +6*
dye = aIgMiN Biﬁsz[é]+V§r[é] )
Bis[6] = Xun—O,pee 6 = R
T (X~ O ) )
Var| é = §? = izd+l : "2"”"" (_, =1, 2, 3) A i=%+lXi
j 0, =
("—dj) P (n-a)
~ A 2 - n
MSEAET | M8&:[¢] = (de Oupprox) + 6 . 3x
2 6, = —
MSE [9] Xz (Gappm+ApproxError)) +067 (n—d,
MSEs{G] Xayn = (B,WW —ApproxError))2 + 07 6=4 +§ 20+ 5
Gy = arg min Biﬁs2[9]+vﬁr[é]
Bids[6] = Xun —0,es ) 3x,
MSEASVT | .. 3(x-%) " (n-d)
varlé] = 6° = (n-d)(n—d-1)
Méﬁ[é] = (Rurn = Oy ) +6
Gy = 21g min Biﬁsz[é]+vﬁr[é]
Blas[é =X,,~ X, ) di),(‘
- 6, = =
varl 8] = &* -%»l(Xi_X"d) 123 b (n-d)
ar[ =0 = Gi-d)n—d-1) d)(ndl) (=123 $x,
A i=dy+1
MSESET % )
StdError[B] \/‘ ””2 5
/2 é _ 1=§+11Y‘
MSE, (8] = (X, ~Xws) ) +6; * 7 (n-d;)
MSE [9] ( (X../Ln+l645(StdError))) 167 | 6= % +; ’0+ :
MSE [9] (%, = (Xon 1. 645(StdError))) +8,
MSEAT Mean Square Error w/Approximation Truncation

MSEAET
MSEASVT
MSESET

Mean Square Error w/Approximation Error Truncation
Mean Square Error w/Approximation and Sample Variance Truncation
Mean Square Error w/Sample Error Truncation

Table 3.1. Truncation Heuristic Summary
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deletion. Table 3.2. is a synopsis of the experiments. My initial batch means
experiments showed that the truncation heuristics deleted extreme amounts of data. I
wanted to see how the truncation heuristics would perform if I did not allow it to search the
entire output sequence. I hypothesized that the first half of the data would be more
transient than the second half. Accordingly, I performed the MSEAT and MSEAET
truncation heuristics on the first half of the data set only. For the batch means E,/Ep/4
models with p = 0.98, I performed the MSEASVT analysis two ways. Idid the analysis
as I had done before allowing the heuristics to search the entire output sequence for the
estimated minimum MSE. I also performed this analysis on only the first half of the output
sequence. I performed a dual analysis for the MSEASVT since it seemed to, overall,
perform better than the other two approximation heuristics. The MSEASVT was less

aggressive in truncating data, as well.

Queueing p Empty & Idle # # Batches| Obs per #
Model# Model or Init QL Reps Rep Exps

1 M/M/1

(Sensitivity) | 0.9 | Empty & Idle| 30 0 10,000 | 41
2 Ey/Ep/4 0.9 Init QL 30 0 10,000 25
3 EJ/E/4 0.9 | Empty & Idle| 30 0 10,000 | 25
4 U/Ln/3 0.9 Init QL 10 0 30,000 25
5 U/Ln/3 0.9 [Empty & Idle| 10 0 30,000 | 25
6 Ey/Er/4 0.98 Init QL 10 0 21,000 25
7 Eo/Ey/4 0.98 | Empty & Idle{ 10 0 21,000 25
8 MM/2M/M/A3 | 0.9 Init QL 10 0 30,000 25

Tandem Queue
9 Ey/Es/4 0.9 Init QL 1 30 210,000 [ 25
10 |EJE, /4 0.9 |[Empty & ldle| 1 30 | 210,000 | 25
11 U/Ln/3 0.9 Init QL 1 10 210,000 | 25
12 U/Ln/3 0.9 |Empty & Idle} 1 10 210,000 | 25
13 Ey/Ey/4 0.98 Init QL 1 10 210,000 [ 25
14 Ey/Eo/4 0.98 | Empty & Idle| 1 10 210,000 | 25

Table 3.2. Table of Experiments
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In my initial Eo/E,/4 stochastically set experiments with batch means, I found the
smallest batch size was 260 observations per batch. Using MINITAB, I checked the
autocorrelation of the 30 batch mean values and found no significant autocorrelation. This
does not preclude the possibility that a truncation could occur in the output sequence that
would create small batches such that a strong correlation could occur. Ichose a smaller
number of batches with a greater number of observations per experiment for subsequent
models.

Finally, I considered a tandem queueing system model to see how the heuristics
performed on a slightly more complex system. Consider a piece of furniture that is being
reupholstered. The reupholstering company has five workers. Two can each strip a piece
of furniture and the other three can each do the reupholstering. Suppose we want to know
the long run expected wait the chair will have before being completed. If we assume
exponential interarrival and service rates, we can model the system as a tandem queue of
M/M/2 and M/M/3 queues. Ichose M/M/m models since they allow an analytical solution
for comparison purposes. Analyzing the tandem queues as independent queues, I made

use of Little's formula and the standard queueing relationships:
Where L = E[Number in System |
L =AW; L, = AW, W = E[Wait in System]
W=W,+ i— L, = E[Number in Queue]
W, = E[Wait in Queue]

Tused Wsygem =[ Wo, + Zzl—] + [ Wo, + ,—ul—] for the expected wait in the system.
1 2




41

CHAPTER 4. RESULTS OF EXPERIMENTS AND ANALYSIS

This chapter analyzes how the heuristics performed across my experiments. Since
my goal was to provided a less biased estimate, I present my results focusing on the
frequency of close estimates to the true expected wait in the queue value. Ibreak this
chapter into two main sections: Replication/deletion analysis and Batch Means analysis. I
provide an analysis for each experiment. In graphs and tables, I illustrate the results for
stochastically set and empty and idle initial conditions. At the end of each section I present
a histogram of the bias across all experiments. I conclude with a thought provoking
discussion on some significant findings I found concerning batch means and the risks

associated with using only one sample path to determine a point estimate.

4.1. Replication Deletion Experiments

In the following sections, I analyze the results of the replication/deletion
experiments. In each section I have a bar chart which depicts the frequency of estimates
that were within * 0.050 and + 0.026 (+ 0.056 and £ 0.026 for p = 0.98 experiments);
where 0 is the true expected value of the wait in the queue. I chose this analysis since it
provides the information a decision maker would most likely want to see. Additionally,
below each figure is a table of average statistics for the 25 experiments I ran for both
stochastically set and empty and idle initial conditions. The “Std Dev”’ columns are the
standard deviation of the 25 values of the half-width and bias, respectively. The ‘“#
Decrease” column is the number of experiments out of 25 that reduced the half-width of
the estimate. The “Avg d*” column is the average truncation point for each method. The
average percent of the data truncated is in the next column. The final column is a
percentage of how often the true expected value of the wait time in the queue is within the
95% confidence interval of the 25 macro-replications. The coverage I achieved was not
what I had hoped for. I would have expected that 95% of my experiments would cover the

true value. However, the significant reduction in the size of the half-width resulted in
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estimates that were overall very similar. This directly resulted in an extremely small
confidence interval. For this reason, I present the coverage, but do not consider it
significant. The tables are an average performance for analysis. To see the results of each

individual experiment, I refer you to Appendix B.

4.1.1. E,/E,/4 Queueing Model (p = 0.90)

The E»/E»/4 Queueing Model with a traffic intensity of 0.90 was my first
experiment. From Figure 4.1. you can see the significant results the approximation
heuristics provide. Regardless if the system initial conditions are set stochastically or
empty and idle, the approximation truncation heuristics produced estimates closer to the
true expected value significantly more often than did simple run mean estimates.

Figure 4.1. is significant in that it directly maps the reduction in bias estimates. We can
see that the run mean at best produces 64% of its estimates within 2% of the true expected
value of the wait time in the queue. This compared to the approximation truncation
heuristics’ worst percentage of 92% shows that I have reduced the bias considerably for
this model. Table 4.1. shows the average bias values for each estimate method. The
standard deviations that I depict in the tables show throughout that I cannot make any
conclusions about the average process. If we were to assume an o of 0.05 and calculate a
confidence interval for each method, we would find that the run mean confidence interval is
such that it overlaps the upper or lower bounds of the heuristic intervals. This means there
are times when the run mean produces estimates with very little bias. Since there is no gap,
I can only make general conclusions. We can see, however that there is a decrease in the
bias and half-width, in general. We can also see, from Table 4.1. that the average half-
width of the approximation truncation heuristic methods is extremely small. In other
words, for each replication, the heuristics produced very similar estimates. This created 30
independent estimates which were not significantly variable. The half-width associated

with these values was small. In fact, out of 25 experiments, the approximation truncation




heuristics reduced the half width 25 times. We can also see a drastic reduction in the

average bias value.
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Figure 4.1. Results of E;/E;/4 (p = 0.90) Experiments
Stochastically Set Imitial Conditions
Est. Avg Std # Avg Std | +5%0ln+2%0 %

Method { 1/2 W| Dev |Decrease| Bias Dev ) AVEJ* Trunc | % Cvg_
JRun Mean | 0.801¢ 0.16 — 0.2671] 0.24 92% 64% 0.000 0.00%] 96.00%
IMSEAT 0.2137] 0.12 25 0.1117] 0.08 100%) 96% 6081.88] 60.82%| 80.00%
IMSEAET 0.2141 0.12 25 0.1183] 0.08 100%, 929% 5938.28] 59.38%] 64.00%
IMSEASVT| 0.2232 0.12 25 0.1268] 0.09 100% 929%| 4497.01] 44.97%{ 80.00%
IMSESET 1.1233; 0.22 1 0.4212] 0.27 887 32% 3307.10y 33.07% 96.00%

Empty & Idle Initial Conditions
Est. Avg Std # Avg Std | +5%06|n+2%0 %

Method | 1/2 W| Dev |Decrease| Bias | Dev Avg d* | Trunc % Cvg
JRun Mean | 0.8009] 0.15 — 0.2570] 0.19 100% 60%]| 0.000 0.00%f 96.00%)
IMSEAT 0.1832] 0.11 25 0.0952| 0.08 100% 96%| 6151.99 61.52%] 60.00%)
IMSEAET 0.185(f 0.11 25 0.0969] 0.08 100%) 96%| 6064.09 60.64%] 56.00%
IMSEASVT | 0.1953] 0.10 25 0.1046{ 0.08 100%i 96%| 4525.10 45.25%] 60.00%,
IMSESET 1.133¢ 0.22 0 0.3982{ 0.30 80% 36%| 3329.71] 33.30% 92.00%

Table 4.1. Synopsis of E;/E2/4 (p = 0.90) Experiments

On average, the MSESET truncation method did not perform well at all in this

model. In fact it increased the bias and half-width. In other words, the MSESET estimate

was not accurate nor precise. It is intuitive that the assumption of the second half of the




44

10,000 observation data set was more representative of the steady state distribution was
invalid. I chose to use fewer replications and greater numbers of observations from this
point on to see if the theoretical foundation of this heuristic could be supported with better
findings.

It is interesting that the average bias for run means of stochastically set models is
greater than the empty and idle system. However, as I discussed earlier, the overlapping
intervals based on the associated standard error preclude me from making any conclusions.
Indeed, if the intervals did not overlap, I would be concerned that the model was incorrect.
As it is, I can only conclude that there is statistically no benefit to setting the initial
conditions for this model.

An inherent problem with truncation heuristics is they discard data to provide an
estimate. The heuristics seek a sub-sequence of the output sequence which is more
representative of the true mean. This is interesting in itself, but also lends itself to extreme
truncations. Some sample paths truncated as much as 99% of the data to provide the
estimate. The reason for this is the transient period associated with a finite run length. If
an individual sample path has a long transient period which is also characterized by sever
fluctuations, the minimum estimate MSE may not occur until the end of the output
sequence. Remember that the heuristics require a sample average. There is no restriction
on how large or small the number of observations to produce this sample average is.

The coverage of the estimators was not good. However, we must consider that the
half widths are so small, that it’s confidence interval associated with the estimator may not
include the true expected wait time in the queue. This brings up an important consideration:
“Is it better to have estimates closer to the true expected value more frequently, or to include

the true expected value in the confidence interval?”

4.1.2. U/Ln/3 Queueing Model
The U/Ln/3 Queueing Model with a traffic intensity of 0.90 was my next

experiment. Figure 4.2. illustrates that the approximation truncation heuristics once,
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again, produced exceptional estimates of the true expected wait time in the queue. Again,
the run mean estimates, overall, fall short of producing the type of estimates we would
desire from our simulation run. The standard error for the bias and the half-width still
preclude me from making any conclusion about stochastically setting the initial conditions
versus empty and idle initial conditions models.

The MSESET truncation once again did not do well. I consider that possibly
increasing the traffic intensity will allow it perform better. At this point, however, I was
ready to scrap this methodology. However, it does provide insight into how the sample
data actually looks. If the estimate from the MSESET had a negative bias, then we can
infer the second half of the output sequence was sequentially correlated low to the true
expected value. The converse is true for positive bias.

Similarly to the Eo/Ey/4 experiments, 20 out of 25 experiments showed a reduction
in the estimate bias for these models for both stochastically set and empty and idle
conditions models. In the other 5 experiments, the run mean estimate actually had a closer
estimate to the true than the truncation heuristics. However, the truncation heuristic
estimates were still very close to the true. The heuristic estimates were worse in these cases
since they are using the approximate mean as the true and seek that value out. Since I
assume we do not know the true expected value, at this point in time, I cannot think of a
way for these cases to accept the run mean over the truncation estimate as a better point
estimate. We must consider the overall success of the heuristics, though. They continually
produce better point estimates, overall, than do the sampie means.

As with the last experiments, I found certain sample paths required a significant
truncation of the output sequence. Unless we were able to truly know the length of the
transient period, we would not be able to fix this shortcoming. Regardless, the goal is a
precise and accurate estimate which the truncation heuristics are producing.

We also see a shortcoming of coverage for these experiments. Again, I do not

consider this significant since the accuracy of the estimates forces an exact precision.
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Figure 4.2. Results of U/Ln/3 (p = 0.90) Experiments

U/Ln/3 (p = 0.90) Empty and Idle

Stochastically Set Imitial Conditions

Est. Avg Std # Avg Std g +5%0|%+2%0 %

Method | 1/2 W| Dev |Decrease| Bias Dev AvE d* | Trunc | % Cv&
fRun Mean | 0.1194] 0.03 — 0.0765] 0.04 76% 36% 0.000 0.00%] 88.00%
IMSEAT 0.0123] 0.02 25 0.0240] 0.01 100% 96%| 18459.43] 61.53%] 20.00%)
IMSEAET | 0.0408 0.02 25 0.0200] 0.02 100%) 88%| 22288.99 74.30% 84.00%)
IMSEASVT | 0.0189 0.02 25 0.0235] 0.01 100%) 92%| 13281.84] 44.27%] 32.00%
IMSESEI' 0.162 0.04 4 0.1049] 0.08 56% 24% 9299.12] 31.00%{ 88.00%

Empty & Idle Initial Conditions
Est. Avg Std # Avg Std | +5%0|%+2%6 %

Method | 1/2 W| Dev |Decrease| Bias | Dev Avgi* Trunc | % Cvg
JRun Mean | 0.1184 0.03 — 0.0745] 0.04 76%) 32%)| 0.000 0.00%] 92.00%j
IMSEAT 0.0128] 0.02 25 0.0253] 0.01 100% 96%| 18156.84] 60.52%f 20.00%
IMSEAET 0.0404 0.02 24 0.0200] 0.02 100% 96%] 21718.2¢) 72.39%] 80.00%)
IMSEASVT] 0.0190¢ 0.02 25 0.0240] 0.01 100%) 96%| 12454.99 41.52% 32.00%
IMSESET 0.1617F7 0.04 3 0.1000] 0.08 56% 28% 9471.65| 31.57% 88.00%

Table 4.2. Synopsis of U/Ln/3 (p = 0.90) Experiments

4.1.3. E,/E;/4 Queueing Model (p = 0.98)

In this model, I attempted to create a gap in the standard error interval so I could

make a conclusion about setting the initial conditions. As Table 4.3. shows, I cannot
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make any conclusion, once again. Raising the traffic intensity to 0.98 did allow me to
show that stochastically setting the initial conditions provided point estimates closer to the
true more frequently than empty and idle system. Indeed, as Figure 4.3. illustrates, 24
out of 25 experiments, the MSEAT and MSEASVT produced estimates close to the mean
when starting the initial conditions stochastically. This is compared to 22 out of 25
experiments that used CRN but were start empty and idle. This is the first time we can
make an assumption that as the system becomes more complex, stochastically setting the
initial conditions will provide a better estimate than starting a system empty and idle.

The MSESET truncation method continued its poor performance. It continued to
provide estimates that were not accurate nor precise. Even increasing the traffic intensity
did not help. It is intuitive that the transient period is significantly larger than 30,000. The
MSESET heuristic performed a little better for batch means experiments (See Batch Means
Analysis). However, it did not do bwell enough for me to consider it further in my analysis.

Accordingly, I only use the MSESET for the U/Ln/3 and Ey/E4/4 (p = 0.90) Batch Means

experiments.
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Figure 4.3. Results of E;/E>/4 (p = 0.98) Experiments
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Stochastically Set Initial Conditions

Est. Avg Std # Avg Std g +5%0|lan+t2%6 %

Method | 1/2 W| Dev |Decrease| Bias | Dev Avg d* | Trunc | % Cvg_
JRun Mean {19.9129] 6.64 — 11.2715] 7.89 60%) 16% 0.00{ 0.00%} 76.00%
IMSEAT 5.8516f 2.58 24 4,0904] 3.40 96%) 60%} 12624.26f 60.12%} 80.00%)
IMSEAET 5.9885] 2.39 24 4.4655) 3.54 849 60%{ 12300.38} 58.57%] 68.00%
IMSEASVT | 5.8658] 2.57 24 4,1233} 3.39 96 %) 60%| 12109.57} 57.66%] 80.00%)
IMSESEI‘ 28.4285| 11.73 3 15.4701] 9.61 28%) 16%} 8229.69 39.19%] 76.00%

Empty & Idle Initial Conditions

Est. Avg Std # Avg Std | +5%0|l%+2%0 %

Method | 1/2 W! Dev |Decrease| Bias | Dev Avg d* | Trunc | % Cvg
JRun Mean [19.3214} 6.37 —_ 12.0492{ 7.77 44% 16%) 0.000 0.00%] 72.00%
IMSEAT 6.3261] 2.53 24 4.5579] 3.61 88% 52%| 13242.37 63.06%] 68.00%
IMSEAET | 6.4354 2.40 24 4.8405] 3.66 88% 52%| 12737.74 60.66%| 64.00%]
JMSEASVT| 6.3259 2.50 24 4.5536] 3.60 88% 52%] 12375.52) 58.93% 72.00%
IMSESEI‘ 28.2734 11.35 3 15.5151) 9.49 24% 16%| 8259.94f 39.33%| 76.00%)

Table 4.3. Synopsis of E2/E;/4 (p = 0.98) Experiments

4.1.4. Analysis Across Replication Deletion Experiments

I did not achieve the implied coverage of 95% from my replication/deletion
experiments using the approximation truncation heuristics. This was a result of extreme
precision on the heuristics part. However, as we have seen, I have provided method for
replication deletion which reduces the half-width of estimator as well as produce a more
accurate estimate of the expected wait time in the queue.

To emphasize how the heuristics performed across experiments, Figure 4.4 and
Figure 4.5. depict a histogram of the bias observations for the run mean and MSEAT
and MSEASVT truncation heuristics. We can see from Figure 4.4. that the majority of
the bias observations for the run mean occur in the interval -4.07 to 1.10. Compare this to
the MSEAT and MSEASVT central frequency intervals of -1.16 to 0.13 and -1.17 to 0.13,
respectively. What this shows us is, in general, the heuristics will produce estimates closer
to the true expected value when compared to the run mean. We can further see this by the
extreme point on the charts for the run mean. The worst truncation heuristic bias
observation is -11.54. Compared to the run mean bias observation of -29.91 or 26.94

extreme points, I have drastically reduced the expected bias of the estimate.
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Figure 4.4. Histogram of Replication Deletion Bias Observations

To further expound on this point, I provide a histogram of tﬁe central bias
observations in Figure 4.5. We can see that, once again, the MSEAT aﬁd MSEASVT
heuristics provide a greater number of estimates closer to the true expected value more
frequently than the run mean. Indeed, for the bias interval -0.2 to 0.02, the run mean only
produced 58 out of 150 estimates while the MSEAT and MSEASVT produce 96 and 97 out
of 150, respectively.

These preliminary findings are encouraging. I now consider the applicability of the
truncation heuristics for a batch means analysis. The following section is my analysis for
Batch Means. It is followed by my analysis of the Tandem queue model which I

performed on a stochastically set initial queue length across replications, only.
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Figure 4.5. Histogram of Replication Deletion Central Bias Observations

4.2. Batch Means Experiments

In the following sections, I analyze the results of the batch means experiments.
Like the replication deletion analysis, I provide a bar chart whic;h depicts the frequency of
estimates that were within + 0.050 and + 0.020 (+ 0.050 and + 0.026 for p = 0.98
experiments). Consistent with my replication deletion analysis, below each figure is a table
of average statistics for the 25 experifnents I ran for both stochastically set and empty and
idle initial conditions. The “d*” column is the truncation point the heuristics selected.
The average percent of the data truncated is in the next column. Refer to Appendix B for

each experiment’s results.
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4.2.1. E;/E;/4 Queueing Model (p = 0.90)

From Figure 4.6. we can see that the heuristics continue to provide excellent
point estimates. However, if we examine Table 4.4. we can see that we do not find the
significant reduction in our half-width. Indeed, the half-width in general increases for all
experiments using batch means. This makes sense if we consider my discussion of batch
means.

First, the truncation heuristics are searching for a sub-sequence of the simulation
output sequence which is more representative of the true expected wait in the queue. Once
it finds that sub-sequence, the heuristic batches the remaining data in “n” batches. In other
words, it divides the sub-sequence and calculates “n”” estimates of the wait time in the
queue. This allows me to build a confidence interval across the batch mean observations,
but ultimately results in the point estimate equal to the average of the truncated sub-
sequence. This is where we see Fishman’s [6] penalty in exact form. We decrease the
bias, yet increase the variance. Consequently, we would expect the coverage to increase
since the half-width is significantly larger than the replication/deletion analysis. As Table
4.4. shows, this is what happened. In one sense, I was pleased that I continued to
produce accurate estimates. On the other hand, this increase in the half-width implies a
decrease in the precision.

Another concern is the significant amount of the output sequence the truncation
heuristics delete. A run length of 210,000 observations equated to approximately 830,000
simulation time increments. As I show later, though considerable in length, the run is not
enough.. In general, the MSEASVT was less aggressive than the other approximation

heuristics in truncating data.
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Figure 4.6. Results of E;/E;/4 (p = 0.90) Batch Means Experiments

Stochastically Set Initial Conditions

Est. Avg Std # Avg Std | +5%0lan+2%0 %

Method | 1/2 W| Dev |Decrease|] Bias | Dev d* Trunc | % Cvg
JRun Mean | 0.9808 0.14 — 0.4199] 0.27 80% 28%i 0.000 0.00% 100 %
IMSEAT 2.2461] 1.25 1 0.0552] 0.01 100% 100%| 133176 63.42% 100 %
IMSEAET 1.5061] 0.49 6 0.1129] 0.14 100%) 92%| 144961| 69.03%] 100 %
IMSEASVT ] 1.4075] 0.64 7 0.0893| 0.13 100%)| 96% 88814 42.29% 100 %
IMSESET 0.8665| 0.19 19 0.5414] 0.36 64% 28% 62651| 29.83%f 80.00%

Empty & Idle Initial Conditions
Est. Avg Std # Avg Std | +5%06]l%+2%0 %

Method | 1/2 W] Dev |Decrease| Bias Dev d* Trunc | % Cvg
JRun Mean | 0.9764 0.12 — 0.4672| 0.29 76% 28% 0] 0.009% 100 %
IMSEAT 2.5771 1.21 1 0.0700{ 0.06 100%) 96%| 156090\ 74.33%| 100 %
IMSEAET 1.6283} 0.49 3 0.1001] 0.13 100%)| 92%| 145002 69.05%| 100 %]
IMSEASVT | 1.6348] 0.78 S 0.0717] 0.04 100%) 100%| 101881] 48.51% 100 %
IMSESEF 0.8627] 0.18 18 0.5833] 0.35 56% 24% 59652 28.41%| 88.00%

Table 4.4. Synopsis of E;/E;/4 (p = 0.90) Batch Means Experiments

4.2.2. U/Ln/3 Queueing Model

In general the U/Ln/3 queueing model batch mean experiments performed as did the

E,/E,/4 queueing model (p = 0.90). We see an increase in the half-width, yet still provide

accurate estimates of the expected wait time in the queue.

We do see in Figure 4.7. that this experiment that the MSEASVT method




53

produces a better frequency of estimates close to the true than the MSEAT heuristic. This

supports my contention that we can allow the output sequence to have a greater impact on

the estimate while softening the power of the MSEAT.
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Fiwe 4.7. Results of U/Ln/3 (p = 0.98) Batch Means Experiments

Stochastically Set Initial Conditions

Est. Avg Std # Avg Std |z +5%06|la+2%6 %

Method | 1/2 W| Dev |Decrease| Bias Dev d* Trunc | % Cvg_
JRun Mean | 0.1288 0.03 — 0.0666] 0.06 76% 48% 0.0 0.00%{ 80.00%
[MSEAT 0.23700 0.12 2 0.0265| 0.003 96 %) 96%{ 108179 51.51% 100 %
IMSEAET 0.3417 0.11 1 0.0667] 0.05 849 52%| 165764 78.94% 100 %
IMSEASVT | 0.2021} 0.09 3 0.0274] 0.01 100%i 96%| 83248 39.64% 100 %}
IMSESEI‘ 0.1194 0.04 _15 0.09_51 0.07 68% 28% 67515 32.15% B0.00%I

Empty & Idle Initial Conditions
Est. Avg Std # Avg Std g +5%0l%+2%0 %

Method | 1/2 W] Dev |Decrease| Bias Dev d* Trunc | % Cvg_
IRun Mean | 0.1325] 0.02 — 0.0702] 0.06 76 %) 40% 0.000 0.00%| 80.00%
IMSEAT 0.2809] 0.16 2 0.0266| 0.003 96%; 96%| 119927 57.11% 100 %
IMSEAET 0.3518] 0.13 1 0.0827{ 0.06 72% 44%| 169780} 80.85% 100 %)
IMSEASVT{ 0.2080 0.09 3 0.0273| 0.01 100%) 96 % 87190 41.52%| 100 %
|MSESET 0.1209 0.03 14 0.1019] 0.07 60% 20% 62136§ 29.59% 80.00%]

Table 4.5. Synopsis of U/Ln/3 (p = 0.90) Batch Means Experiments

4.2.3. E;/E2/4 Queueing Model (p = 0.98)

In this experiment, I allowed the heuristics to only seek a representative sub-

sequence in the first half of the data for the truncation heuristics. This assumed that the
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second half-of the output sequence was more representative of the long-run distribution of
the expected wait time in the queue. As I discussed earlier, I assumed a run length of
210,000 observations would be enough to travel through the transient phase. From
Figure 4.8. we can see that this assumption failed.

I performed an additional analysis using the MSEASVT heuristic. In this analysis, I
allowed the heuristic to search the entire output sequence as I had in previous batch means
experiments. I did not use the MSESET heuristic because of its poor performance up to
this point. In Figure 4.8., the column “MSEASVT (All)” represents my results allowing
the MSEASVT heuristic to search “all” of the output sequence.

Only the MSEASVT analysis across the entire data set produced an acceptable
result. This intrigued me, since I knew that length of the transient phase is unique to the
sample path. I wanted to see what run length it would take a sample path to travel through
the transient phase. This is critical since the point that an apparent covariant stationary
process begins is a random variable. No other research discusses the random nature of this

point. I evaluate this in the next section.
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Figure 4.8. Results of E;/E;/4 (p = 0.98) Batch Means Experiments
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Stochastically Set Initial Conditions

Est. Avg Std # Avg Std | +5%0|lnt2%0 %
Method | 1/2 W| Dev |Decrease| Bias | Dev d* Trunc | % Cvg
JRun Mean |18.5432) 7.94 — 10.9944] 7.04 52% 20% 0.008 0.00%| 72.00%
IMSEAT [22.8314] 11.76 5 12.7225| 8.14 36%) 16% 52983] 25.23%| 76.00%
IMSEAET }18.0118 11.34 16 14.1276] 9.52 28%) 20% 64973] 30.949% 56.00%]
IMSEASVT [22.2046] 11.98 7 12.7693| 8.13 32% 16%) 44269 21.08% 80.00%
MSEASVT

(Al) {35.2173f 15.88 2 0.8560{ 3.33 96% 96% 146188 69.61% 100 %

Empty & Idle Initial Conditions

Est. Avg Std # Avg Std | +5%0|%+2%0 %
Method | 1/2 W| Dev |Decrease| Bias | Deyv d* Trunc | % Cvg_
fRun Mean {18.8812) 7.91 — 10.8263} 7.05 56% 24% 0.000 0.00%] 72.00%
IMSEAT  |24.2643] 11.77 4 12.9252) 8.07 36%) 12% 57933| 27.59%| 88.00%]
IMSEAET |18.7783[ 10.89 11 13.8823] 8.43 32% 16%) 64905| 30.91%{ 60.00%]
IMSEASVT [22.0372] 10.76 7 12.5352] 8.23 32% 16%) 42352 20.17%| 92.00%]
MSEASVT

(All) [34.8337] 15.31 2 1.3809] 4.23 92% 92%| 135933] 64.73%| 96.00%)

Table 4.6. Synopsis of E/E,/4 (p = 0.98) Batch Means Experiments

4.2.4. Analysis Across Batch Means Experiments

I did not focus my research on the length of the transient period. Rather I focused
on the point estimate. Through my research, however, when I considered the batch means
analysis I found, if you decide to use batch means aé your primary method of creating
independent observations for your estimator, you must consider the sensitivity of the
estimate to a sample path run length.

Figure 4.9. shows a sample path for the empty and idle Eo/E2/4 (p = 0.98)
model. The straight line is the true expected value. We can that the process appears to
settle nicely into a covariance stationary phase. Consider the Schruben test for initialization
bias. It basically checks to see if the first half of an output sequence is similar to the second
half. If it is, then Schruben’s test concludes there is no initialization bias. If we were to
truncate the output sequence at “d*”’, we would find that the remaining output sequence
would “fool” the Schruben test. As we can see, if we were to use a batch means analysis
and be unfortunate enough to get this sample path when trying to estimate the true value of

92.796, we run the risk of making decisions based upon a biased estimate that appears to
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approach its steady state value. This sample path is reprééentative of those in my

experiments.
Value Cumulative Run Mean
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Figure 4.9. Batch Means Sample Path for 210,000 Observations

Figure 4.10. is a graphical depiction of the same sample path, but for a greater

number of observations. As we can see, if we had used a longer run length, we would

have seen an increase in the cumulative run mean. The chart shows dl“. This is the
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Figure 4.10. Batch Means Sample Path for 750,000 Observations
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truncation point I showed in Figure 4.9. It is obvious that the end time of 829,000 does
not complete the transient period for this sample path. Consider if we had used a run
length of 280,000 observations, we would produce an estimate near 110. This emphasizes
the point that we have no idea of the length of the transient period. The optimal truncation
point is probably near d; . This analysis furthers the concern that batch means methods can
be very sensitive to simulation run length. Worse yet, we have no knowledge of these
random characteristics.

Returning to the focus of my research, as in the replication deletion analysis, I
provide a histogram of the bias observation for the batch means analysis. Figure 4.11.
is misleading in that it appears that the Batch Mean estimates with no truncation produce
. frequently more estimates closer to the true expected wait time in the queue. Figure
4.12. is the histogram of the central bias observations. We can see from this chart that the
MSEAT and MSEASVT heuristics still outperform the batch mean estimates by providing
qloser estimates to the true more frequently. The batch means estimator can only produce
41 out of 150 estimates within the interval -0.07 to 0.07, while the MSEAT and
MSEASVT produce 96 and 95 out of 150 estimates within the same interval. This
supports the replication/deletion conclusion that the heuristics provide more accurate
estimates.

However, as I have shown above, the heuristics are not as precise as the sample
mean estimate using the batch means methodology to create independent estimates. This
presents interesting choices a decision maker must make prior to simulation. I would
assume a decision maker would want the most accurate, and most precise estimate
possible. If accuracy is the only criteria, then batch means performs as well, if not better,

than replication deletion in providing an accurate point estimate.
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4.3. M/M/2 & M/M/3 Tandem Queueing Model

As my final experiment, I performed my analysis across a tandem queueing model.
Figure 4.13. supports all conclusions made thus far. The heuristics perform
exceptionally in producing accurate and precise estimate. As Table 4.7. shows us, we
reduced the half-width of estimate observation 25 out of 25 times when we compare the run
mean half-width to those of the approximation heuristics. What is significant in Table
4.7. is that the heuristics provided as good a coverage as the run mean estimator. The fact
that I continue to produce more accurate and more precise estimates than the run mean and
equal the run mean coverage leads me to believe that the methodologies I provide in my

research can only improve the performance of estimators used in more complex systems.

% of Estimates Close to 9
100.00% —

T

¢

RIS
31

Bun Mean
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Baorsneo Baoi2ne

Tandem Queue(p = 0.90) w/Initial Conditions

Figure 4.13. Results of M/M/2 and M/M3
Tandem Queue Experiments

Est. Avg Std # Avg Std | +5%0|% +2%0
Method |1/2 W | Dev |Decrease|l Bias | Dev %o Cvg_
JRun Mean | 2.0032] 0.48 — 0.71420 0.71 92.00%| 68.00% 96%
IMSEAT 0.2391] 0.23 25 0.1273] 0.13 100.00%| 100.00% 96%
IMSEAET 0.4881] 0.23 25 0.2752] 0.28 100.00%| 96.00% 84%
IMSEASVT 0.2885| 0.24 25 0.3023] 0.30 96.00%| 96.00% 96%

Table 4.7. Synopsis of Tandem Queue (p = 0.90) Experiments
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

5.1. General

In this research, I developed four truncation heuristics of a simulation output
sequence with the specific goal of producing a more accurate and more precise estimate
than that of a standard output sequence mean.

We can see from Chapter 4. that using proven queueing approximations to
stochastically set the initial conditions of the system reduces the initialization bias of a
performance parameter estimate when we have a finite computer budget. Performing the
stochastic initialization performs better for complex systems or systems with a large
expected number in the system. This is true because a small expected number in the system
has an associated shorter transient period. If this is the case, then starting the system
stochastically shows statistically little improvement.

Although a finite run length may not get us through a transient period, the results
lead me to believe that stochastically setting the initial conditions will reduce the length of
the transient period. Additionally, using the approximations as the true mean value to
perform a back-end truncation of output data at the point where the minimum estimated
MSE occurs reduces the bias of the estimate. Even if an approximation had an absolute
error of 20% to the true value, as shown, it could still produce a run estimate closer to the
true expected value. Though the coverage across the 25 experiments for each model was
not what I desired, you can easily see that the confidence half-width across each experiment
was significantly smaller than that of the untruncated fun mean data. This significant
improvement in the precision is the reason for the shortage of coverage. Additionally, I
consistently produced estimates closer to the true value of the mean. Thus, I achieved my
goal of the research to produce a more precise and more accurate point estimate of the
waiting time in a queue.

While I do acknowledge that more complex tests and further research be conducted

on this topic, the preliminary findings of using the Whitt approximations to set initial
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conditions of a queueing simulation and assist us in getting and accurate an precise estimate
are encouraging. I have found that my research supports Kelton's [17] contention that the
methodology lessens the possibility of incorrect inferences from a data output sequence.

My truncation methods do lend themselves to a batch means analysis of one long
run. However, the initial condition point of the one run negates the power of the steady
state distribution approximation across multiple observations. I concede that at the
beginning of each batch, a new initial "Queue Length" exists which should be more
representative of steady state as the simulation run length increases. Since we do not know
the length of each sample path's transient period, there is danger in using only one sample
path to perform an analysis. I have shown this in my batch means experiments. Usually a
person using batch means assumes his one long run will travel through a transient period.
Since I assumed a finite computer budget, hedging one’s bets on one sample path with no
knowledge of the sample path’s transient periods is risky. Using replication/deletion, we
do not make any assumption other than we are most likely to not get through the transient
phaécl. I have shown this more conservative approach to data analysis produces sound
results.

The question still remains as to which is better; to have a coverage of estimates that
could still have significant bias and variance, or less coverage with little or no bias and
minimum variance? The decision maker is the only one who can answer this fundamental
question. I submit, however, that since statistical analysis and inferences of output data
can lead to errors based solely on the data, using the more precise and more accurate

estimate should ultimately result in better outcome from decisions based upon that estimate.

5.2. Review of Contributions
Through my research, I have made considerable contributions. They are:
i) Provided insight into approximation-assisted control of initialization bias. This

is a topic which has not received much research in the past.
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ii) Developed a proven methodology which results in more accurate and precise
estimates of a desired performance parameter than conventional methods.

iii) Eliminated the need for pilot runs to gain insight into the behavior of the system
by maximizing the use of apriori information.

iv) Along with Dr. Manuel D. Rossetti, produced a paper on my research which
may be published at the 1995 Winter Simulation Conference.

v) Produced a portable code and set of easily implementable algorithms for the
methods presented herein. (See Appendix A for Algorithms)

vi) Provided a method that ultimately provides more accurate information possible
in a decision making process than a sample mean.

5.3. Future Research

Since I focused on the estimated MSE as a truncation point heuristic, I assumed that
there would be times when the bias reduction outweighed the variance increase to such a
degree that I would have a half-width increase. While this was the case when I applied the
heuristics in a batch means methodology, this was not the case for replication/deletion. The
drastic reduction in the half-width makes an intriguing statement for possible variance
reduction methods using approximations. Focusing on a data set and minimizing the
variance with the assistance of an approximation may have significant application not only
in queueing simulations, but simulations in general.

Other research areas that could continue from the groundwork established herein
include:

i) Testing the heuristics on extremely complex models to evaluate their
performance.

ii) Determining the length of the transient period prior to simulation using analytical
approximations.

iii) Improve the half-width performance of the heuristics for batch means methods.

One possibility is to batch the output sequence and allow the heuristics to search each batch
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for a sub-sequence that is more representative of the true expected value. If the output
sequence had completely traversed the transient period we would expect the amount of data

truncated per batch to decrease.
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APPENDIX A. ALGORITHMS

A.1l. Setting Up the Queueing Model Algorithm

Step 1. Determine number of parallel servers (m), arrival mean time (1/A), service mean
time (1/W), arrival variance (62,) and service variance (6%) in model design.

Step 2. Calculate Squared Coefficients of Variation for Arrival, Service and the System,
and Traffic Intensity.

a cz=—6“
a %2
b c2=—o:
5 %lz
2 2
o R2oGate
2
d, p:-%_.
myl

Step 3. Calculate the Probability there are zero customers in system.
1
P, =

m(Ap) (M) 1
Eb n! * m! A
"[m]

Step 4. Calculate the Probability "n" Customers are in the System for the M/M/m Queue

Q'/—#-)'—-fo-, if 0<n<s
P, = n!
Alu)" P,

Step 5. Determine the probability of wait in the system P[W(M IM/ m)] >0
A[w(ms mim)> of|=[1- P{wists mim)]=0]=[1- 5, |
Step 6. Using Whitt[37] Approximation, determine P(Q > 0)¢;/6/m

a. P(Q> O)Gl/a/m = pCZPW(M/M/m)

b. P(Q=0)g6/m=1- (pcsz(wwm) **Probability there is no wait.




Step 7. Generate U~(0, 1)

a. IfU> P(Q>0)g,6/m» @ queue exists.
1. Generate Q~P{Q =k}.

2. Return N = Q + m **Stochastic Initial Condition**
b. If U< P(Q>0)s,6/m» there is no queue. Must generate number in system

1. Generate N~p(k) **Truncated Poisson Distribution w/o Intensity**
2. Return N. **Stochastic Initial Condition**
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A.2. Expected Wait for the GI/G/m Queue Algorithm
(Used when U 2 P(Q>0)s;/6/m)

Step 1. Calculate needed values for Whitt Approximations
(1-p)(m- 1)[(4 +5m)? — 2]
16mp

a. y(m,p)=min{0.24,

b. ¢,(m,p)=1+7(m.p)

c. ¢,(m,p)=1-4y(m,p)

d. ¢,(m,p)= ¢2(m,P)CXP(_2(1 P %))

. 6,(m. p)=mm{l, ¢1(m,p);0¢3(m,p)}

1 ct>1

f. ‘I’(cz,m,p) = {

o, (mp)') o< <

[ 4fc? - 2] C o Ter+¢? i
—————[ > Sz] 0,(m,p)+| ——— [¥| =—=,m,p cixc?
( ) 2) 4c, —3c; | 4c; =3¢, | | 2 i
. ,CasCis) =9 . i
B Apcuc, [ c2-c? ] C 43¢ | [c2+c?
—s—2_ 1, (m,p)+| —=5——5 [¥| 2—=,m,p ci<c?
| 2¢; +2¢; | |2¢c;+2¢; | [ 2 ]

h. Calculate the Expected Wait for the M/M/m Queue (= E[Queue Length]/A)

1
o H i

i. Using Whit[37] Approximation, calculate the approximate Expected Wait in the
Queue for the GI/G/m queue.

c2ic?
2

E[Wchcm ] = ¢(P,C§’C§’m)[M:IE[WQM/M/m ]

j. Calculate the Expected Conditional Queue Length GIVEN the Queue is NOT
empty.

E[LolLo > 0]=AP{Q> O}E[W,,,, ]




A.3. Whitt Approximation Case Decision Algorithm

Step 1. Calculate the Coefficients of Variation for Delay and the Conditional Queue
Length.

; 3.0c2(1.0+¢c?) c221.0
v o7 (2.0c? +1.0)(1.0+c}) otherwise
., 2p—1+(4(1-p)d)
d ™ 2
b 3(c? +1)
2 _ 1 _ 2
c. = —————————E[LQlLQ N 0] 1.0+ (p(cd + 1))

Step 2. Determine Case Algorithm to use.
Case 1 if ¢’ > (1.0 —( Lo )+ 0.02)

E[LylLy>0]

<0.02

Case 2 if

2 .
c. 1.0+ ( E[LQ1IEQ>0])

2

L, Case =1
Case 3if 2 > > 1 ANp 2 <1 1

¢ 7 2(E[LglLy>0]) ¢
Case 4 if ¢ < el L o))

2E[Lg1Lg>0))’

N

(E[Lg1Ly>0]-0.02)
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A.4. Probability of Wait for GI/G/m Approximation Algorithm

Step 1. Calculate:
.= ¢t +c?
(1 + cf)

a.

_ (m—mp—-0.5)

(mpz)%

- (1)[(1 +c)(1- p)m” / (ci +el )]
- cp[(l —p)m: ]

c. m,=min{l, [P(W(M / M 1m)]>0]

-0 2(1—P)my2/(1+cj)
1[ - q:[(l - p)myz] ][P[W(M /M/m)]>]

d. m,=min{l,

e = 1_(I)|:(m—mp—0.5

/o]

f m =pr,+(1-p)'m,

g m,=cim +(1-cl)m,

h. m,=2(1-c?)(y - 0.5)m, +[1-[2(1-c2)(y-o0. 5)]Jr,
Step 2. Approximation for P{W ,,,,, >0}

P{W ¢/6/m >0} = min{m, 1}
n, ifm < 6ory < 0.50rc? 21

n={m, ifm > 7andy = L.0andc’ <1

m, ifm > 7andc? <1and0.5 <y <1




A.5. p(k) Truncated Poisson Distribution Algorithm
Step 1. Generate V~(0, 1)

Step 2. Calculate value of expected number of busy servers (L)

L=m(p-P{Q=0})
Step 3. Generate value from Offered Load From Carried Load Function
o, = OfferedlLoadFromCarriedLoad(m, L)
Step 4. Set up an array of values such that
%,
” .

. g
Array[i] = m+13113

i=0 j!
Step 5. Generate Truncated Poisson Distribution CDF Array for 0 <i<(m+l)

TruncPoisCDF[0] = Array[0]
TruncPoisCDF[i] = TruncPoisCDF[i-1] + Arrayl[i]

Step 6. Return N =i such that V < Maximum TruncPoisCDF[i] Value. This is the
stochastic initial number of customers in the system given there is not a queue.
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A.6. OfferedLoadFromCarriedLoad(integer m, double L) Function
Algorithm

Step 1. Set the maximum number of iterations (e.g.; iterations = 50)
Step 2. Set the error tolerance (e.g.; eps = 0.000001)

Step 3. Set initial starting point

L
StartPoint = L(Q—QL"—))
m-—1L

Step 4. Perform Loop Calculation

for(k =1; i < iterations; k ++)
{
b= ErlangFunc(m, StartPoint)

f = (StartPoint * (1- b))~ L
f1=1.0-b~ ((m — StartPoint + (StartPoint * b)) * b)
if (f < 1.0e - 10)

f=0.0

if(f1< 1.0e —10)
£1=0.0

al = StartPoint — i
f1

If the absolute value of al—StartPoint < eps, StartPoint = al.

}

Step 4. Return "al" to the Truncate Poisson Distribution Function




A.7. ErlangFunc(integer c, double a) Algorithm

Step 1. Initialize real variables bn and b.

Step 2. Calculate bn =

1.0+a

Step 3. Perform Loop Calculation

fori=2;i<c; i++)

{

_a*bn
i+(a*bn)

bn=>b
}

Step 4. Return "b" to Offered Load From Carried Load Function
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A.8. Queue Length Generation Case 1 Algorithm (Mixture of Two
Geometric Distributions)

Step 1. Calculate

1+ (|[1-—2

c?+1+ !
E[LylLy>0]
a. y=
2.0
E[L,IL,>0]
b. ml=—L2 2"
2.0y
N E»LQILQ>O‘

2=
T n0(L0-7)

Step 2. If pl > 1.0, stop and proceed to Case 2.
Step 3. If pl < 1.0, generate R~(0, 1)

Step 4. If R < Set Initial Number in the System to N =1.0+ ll_n((il—_Rl))l +m
ni-=p

Step 5. If R > 7y Set Initial Number in the Systemto N =1.0+ Il—ll(%l—_—fz))-—l +m
mi—p
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A.9. Queue Length Generation Case 2 Algorithm (Simple Geometric
Distributions)

1.0

Step 1. Calculate pl= ————=pl
P P LI, > 0]

Step 2. Generate R~(0, 1).

Step 3. Set Initial Number in the Systemto N =10+ —11(—1———R)- +m
In(1-7pl)
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A.10. Queue Length Generation Case 3 Algorithm (Convolution of Two
Geometric Distributions)

Step 1. Calculate

(014 {fefno o ')

m, = 5
d. , i {
Z(E[LQILQ > O]) 1- Cc— m
- 2
((E[LQILQ >0]+1)+ [(E[LQILQ’ >0]- 1)2]1/2)
m, = 3
b. 1
2
2(E[Lo/Lq > 0]) (1 —c2- WJ
- 2
c. p=—1 =L
- D= m+1 D= m,
Step 2. Generate U~(0, 1). ¥, =+ (II"_UPI)
Step 3. Generate U~(0, 1). ¥, =~ (l1n—Up2)

Step4. RetunN=Y;+ Y, +m




A.11. Queue Length Generation Case 4 Algorithm (Convolution of Two

Geometric Distributions)

Step 1. Calculate

N
- b m;+1 P m,

nU
ln(l - p,)

inU

Step 2. Generate U~(0, 1). Y, =

Step 3. Generate U~(0, 1). Y, =

Step4. RetunN=Y; + Y, +m

ln(l - pz)
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APPENNDIX B. EXPERIMENT RESULTS DATA

Micro Analysis of Results
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Model: E,/E,/4 Replication Deletion w/ Initial Q Length
Est. Less +5%0 | +2% 0 Avg %0

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.9938 — 0.1660 1 1 0] 0.00%| 13.60596
MSEAT 0.5549 1 -0.1345 1 1 6113]61.13%} 13.30546

1 |MSEAET 0.5552 1 -0.1354 1 1 5602{56.02%| 13.30464
MSEASVT 0.5661 1 -0.2092 1 1 3850]38.50%| 13.23082
MSESET 1.1796 0 -0.2740 1 0 3452|34.52%| 13.16604
Run Mean 0.8289 — -0.3299 1 0 0] 0.00%| 13.11010
MSEAT 0.2846 1 -0.2676 1 1 6723]67.23%| 13.17245

2 [MSEAET 0.2862 1 -0.2710 1 0 6709| 67.09%| 13.16898
MSEASVT 0.2925 1 -0.3061 1 0 5117)51.17%} 13.13386
MSESET 1.1266 0 0.3525 1 0 3447134.47%| 13.79251
Run Mean 1.0613 — -0.4181 1 0 0| 0.00%| 13.02190
MSEAT 0.0994 1 -0.1508 1 1 6716]67.16%| 13.28918

3 |[MSEAET 0.1039 1 -0.1592 1 1 6373]63.73%| 13.28083
MSEASVT 0.1061 1 -0.1311 1 1 4805/ 48.05%| 13.30891
MSESET 1.7295 0 0.2331 1 1 3249]32.49%] 13.67312
Run Mean 0.6825 — 0.0220 1 1 0] 0.00%| 13.46201
MSEAT 0.1654 1 -0.1256 1 1 4833|48.33%| 13.31436

4 |[MSEAET 0.1696 1 -0.1251 1 1 5110]51.10%} 13.31491
MSEASVT 0.1772 1 -0.1672 1 1 3551]35.51%] 13.27283
MSESET 0.8102 0 -0.5016 1 0 3146|31.46%| 12.93841
Run Mean 0.9510 — 0.6470 1 0 0{ 0.00%| 14.08703
MSEAT 0.3045 1 0.1076 1 1 6079 60.79%| 13.54757

5 |MSEAET 0.3044 1 0.1028 1 1 5619|56.19%} 13.54282
MSEASVT 0.3117 1 0.1262 1 1 4304]43.04%] 13.56621
MSESET 1.3343 0 0.5421 1 0 3119|31.19%] 13.98211
Run Mean 0.6437 — 0.0235 1 1 0{ 0.00%| 13.46355
MSEAT 0.1357 1 -0.0009 1 1 7102 71.02%) 13.43911

6 |MSEAET 0.1428 1 -0.0228 1 1 6952} 69.52%| 13.41717
MSEASVT 0.1467 1 -0.0172 1 1 4674|46.74%| 13.42277
MSESET 0.9767 0 0.3537 1 0 3326]33.26%| 13.79370
Run Mean 0.8717 — 0.0735 1 1 0{ 0.00%| 13.51350
MSEAT 0.4269 1 -0.0515 1 1 6366 63.66%} 13.38846

7 |MSEAET 0.4270 1 -0.0531 1 1 6248 62.48%] 13.38693
MSEASVT 0.4314 1 -0.0667 1 1 4850| 48.50%| 13.37330
MSESET 1.3434 0 0.6057 1 0 3170]31.70%} 14.04568
Run Mean 0.5926 — -0.6544 0 0 0] 0.00%) 12.78565
MSEAT 0.0812 1 -0.1231 1 1 5606] 56.06%| 13.31692

8 |MSEAET 0.0803 1 -0.1339 1 1 5479|54.79%| 13.30610
MSEASVT 0.0920 1 -0.1712 1 1 3926{39.26%| 13.26878
MSESET 0.9348 0 -0.9010 0 0 3410]|34.10%} 12.53898
Run Mean 0.7426 — -0.0172 1 1 0] 0.00%| 13.42280
MSEAT 0.3224 1 0.0480 1 1 5174|51.74%| 13.48800

9 |MSEAET 0.3243 1 0.0287 1 1 5123]51.23%| 13.46866
MSEASVT 0.3227 1 0.0437 1 1 4001]40.01%]| 13.48367
MSESET 1.2074 0 -0.2266 1 1 3539|35.39%| 13.21337
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Micro Analysis of Results
Model: E, /E, /4 Replication Deletion w/ Initial Q Length
Est. Less +5%0 | +t2% 6 Avg %o

Exp#| Method {1/2 Width| Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.6425 — -0.2207 1 i 0| 0.00%| 13.21933
MSEAT 0.2789 1 -0.0166 i 1 5943|59.43%| 13.42336

10 |MSEAET 0.2793 1 -0.0241 1 1 5934159.34%| 13.41595
MSEASVT 0.2881 | -0.0286 1 1 5442{54.42%) 13.41136
MSESET 1.0271 0 0.0062 1 1 3374|33.74%| 13.44615

Run Mean 0.9582 — -0.0130 1 1 0} 0.00%| 13.42703
MSEAT 0.2216 1 0.1171 1 1 6032] 60.32%| 13.55714

11 [MSEAET 0.2255 1 0.0986 1 1 5959]59.59%| 13.53862
MSEASVT 0.2250 1 0.1089 1 1 4998|49.98%| 13.54894
MSESET 1.2604 0 0.4162 1 0 3001|30.01%} 13.85621

Run Mean 0.7612 — -0.0531 1 1 0| 0.00%{ 13.38688
MSEAT 0.2236 1 -0.2027 1 1 5745]57.45%| 13.23730

12 |MSEAET 0.2237 1 -0.2022 1 1 5983]59.83%| 13.23785
MSEASVT 0.2281 1 -0.2346 1 1 44041 44.04%| 13.20542
MSESET 0.9489 0 -0.5205 1 0 3392]33.92%] 12.91949

Run Mean 0.6297 — -0.4586 1 0 0} 0.00%| 12.98142
MSEAT 0.3135 1 0.0753 1 1 6141]61.41%| 13.51526

13 |MSEAET 0.3139 1 0.0711 1 1 5737157.37%| 13.51115
MSEASVT 0.3235 1 0.0448 1 1 3533]|35.33%| 13.48476
MSESET 1.2982 0 -0.6239 1 0 3480| 34.80%| 12.81614

Run Mean 0.5948 — -0.4203 1 0 0] 0.00%{ 13.01965
MSEAT 0.2410 1 -0.0438 1 1 5359} 53.59%] 13.39621

14 |MSEAET 0.2413 1 -0.0409 1 1 4860} 48.60%] 13.39910
MSEASVT 0.2435 1 -0.0659 1 1 4099 40.99%| 13.37413
MSESET 0.8984 0 -0.42044 1 0 3515|35.15%| 13.01959

Run Mean 0.7944 — -0.0908 1 1 0] 0.00%| 13.34922
MSEAT 0.1998 1 -0.2056 1 1 6324] 63.24%| 13.23437

15 |MSEAET 0.1998 1 -0.2298 1 1 6158|61.58%| 13.21024
MSEASVT 0.2053 1 -0.1907 1 1 4481|44.81%) 13.24927
MSESET 0.8831 0 -0.1234 1 1 3274]32.74%| 13.31664

Run Mean 0.6298 — -0.5943 1 0 0] 0.00%| 12.84573
MSEAT 0.2485 1 -0.1163 1 1 6243162.43%| 13.32375

16 |MSEAET 0.2483 1 -0.1276 1 1 5619]56.19%| 13.31241
MSEASVT 0.2534 1 -0.1354 1 1 4488) 44.88%] 13.30462
MSESET 0.8478 0 -1.0690 0 0 2725|27.25%| 12.37097

Run Mean 1.0174 —_ 0.1323 1 1 0| 0.00%| 13.57226
MSEAT 0.0409 1 -0.0299 1 1 6454] 64.54%| 13.41008

17 |MSEAET 0.0258 1 -0.0651 1 1 6216} 62.16%| 13.37486
MSEASVT 0.0672 1 -0.0101 1 1 5110151.10%] 13.42992
MSESET 1.0158 1 0.0773 1 1 3448|34.48%|) 13.51726

Run Mean 0.5785 —_ 0.2080 1 1 0f 0.00%] 13.64800
MSEAT 0.0403 1 -0.0645 1 1 5209} 52.09%| 13.37555

18 |MSEAET 0.0411 1 -0.0855 1 1 5451]54.51%| 13.35455
MSEASVT 0.0637 1 -0.0395 1 1 3681]36.81%| 13.40050
MSESET 0.9808 0 0.2047 1 1 3174|31.74%| 13.64466
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Model: E, /E, /4 Replication Deletion w/ Initial Q Length
Est. Less +5%0 | +2% 0 Avg %

Exp#| Method |1/2 Width] Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.8325f} — -0.1512 1 1 0] 0.00%| 13.28876
MSEAT 0.0546 1 -0.0385 1 1 6423]64.23%| 13.40154

19 |MSEAET 0.0517 1 -0.0625 1 1 6343163.43%| 13.37754
MSEASVT 0.0595 1 -0.0412 1 1 4917149.17%| 13.39880
MSESET 1.4523 0 0.4474 1 0 3129]31.29%| 13.88742
Run Mean 0.7180, — -0.0898 1 1 0| 0.00%| 13.35020
MSEAT 0.1228 1 -0.1160 1 1 6726| 67.26%| 13.32401

20 |MSEAET 0.1232 1 -0.1292 1 1 6284]62.84%| 13.31080
MSEASVT 0.1322 1 -0.1180 1 1 4982{49.82%] 13.32198
MSESET 0.9836 0 -0.0619 1 1 3885]38.85%| 13.37808
Run Mean 1.0256] — 0.6534 1 0 0] 0.00%| 14.09338
MSEAT 0.2364 1 0.0616 1 1 6574]65.74%| 13.50162

21 |MSEAET 0.2373 1 0.0778 1 1 6270]62.70%| 13.51784
MSEASVT 0.2509 1 0.1248 1 1 4503145.03%] 13.56480
MSESET 1.0646 0 0.4714 | 0 34091 34.09%| 13.91141
Run Mean 0.7057} — -0.1918 1 1 0] 0.00%| 13.24822
MSEAT 0.2456 1 -0.2978 1 0 5167151.67%| 13.14225

22 |MSEAET 0.2467 1 -0.2958 1 0 5541]55.41%f 13.14420
MSEASVT 0.2511 1 -0.3493 1 0 3820] 38.20%| 13.09069
MSESET 1.0823 0 -0.6284 1 0 3110}31.10%| 12.81157
Run Mean 0.9242] — -0.1515 1 1 0] 0.00%| 13.28854
MSEAT 0.2578 1 -0.2567 1 1 6467|64.67%| 13.18327

23 |MSEAET 0.2595 1 -0.2587 1 1 6433| 64.33%} 13.18131
MSEASVT 0.2598 1 -0.2627 1 1 5512{55.12%] 13.17727
MSESET 1.2103 0 -0.1016 1 1 3241§32.41%| 13.33842
Run Mean 1.0277] — 0.7468 0 0 0] 0.00%| 14.18676
MSEAT 0.1885 1 -0.1016 1 1 6107]61.07%| 13.33840

24 |MSEAET 0.1890 1 -0.0953 1 1 6111]161.11%} 13.34469
MSEASVT 0.2223 1 -0.1357 1 1 4462|44.62%} 13.30432
MSESET 1.0333 0 0.9205 0 0 3532|35.32%| 14.36053
Run Mean 0.8325f — -0.1512 1 1 0] 0.00%| 13.28876
MSEAT 0.0546 1 -0.0385 1 1 6423]|64.23%| 13.40154

25 |MSEAET 0.0517 1 -0.0625 1 1 6343)63.43%| 13.37754
MSEASVT 0.0595 1 -0.0412 1 1 4917]49.17%| 13.39880
MSESET 1.4523 0 0.4474 1 0 3129]31.29%| 13.88742
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Model: E,/E, /4 Replication Deletion w/Empty & Idle
Est. Less +5%0 1 +2%60 Avg %

Exp#| Method {1/2 Width] Y/N Bias Trunc Pt.| Trunc |[Estimate
Run Mean 0.8642 — 0.1174 1 1 0| 0.00%| 13.55743
MSEAT 0.2460 1 -0.2047 1 1 5928} 59.28%| 13.23535

1 |MSEAET 0.2479 1 -0.2084 1 1 5912|59.12%| 13.23162
MSEASVT 0.2659 1 -0.2409 1 1 4203|42.03%| 13.19915
MSESET 1.1719 0 -0.0576 1 1 3282{32.82%| 13.38240
Run Mean 0.8372 — -0.3110 1 0 0| 0.00%| 13.12897
MSEAT 0.0606 1 -0.1110 1 1 7346|73.46%] 13.32901

2 |MSEAET 0.0680 1 -0.1111 1 1 7325|73.25%| 13.32892
MSEASVT 0.0999 1 -0.1189 1 1 5859|58.59%| 13.32112
MSESET 1.1501 0 0.3097 1 0 3576|35.76%| 13.74965
Run Mean 1.1142 — -0.2797 1 0 0] 0.00%] 13.16034
MSEAT 0.1309 1 -0.1508 1 1 6673|66.73%| 13.28923

3 |MSEAET 0.1334 1 -0.1734 1 1 6293]62.93%| 13.26661
MSEASVT 0.1389 1 -0.1557 1 1 4787147.87%| 13.28427
MSESET 1.8350 0 0.5551 1 0 3450| 34.50%| 13.99507
Run Mean 0.6932 — -0.0322 1 1 0| 0.00%| 13.40781
MSEAT 0.0607 1 -0.0898 1 1 52771 52.77%| 13.35020

4 |MSEAET 0.0663 1 -0.0817 1 1 5349]53.49%| 13.35831
MSEASVT 0.0722 1 -0.0967 1 1 4504]45.04%| 13.34330
MSESET 0.7859 0 -0.5377 1 0 2933|29.33%| 12.90230
Run Mean 0.8144 — 0.4228 1 0 0| 0.00%| 13.86282
MSEAT 0.2717 1 0.0278 1 1 6403{64.03%] 13.46784

5 |MSEAET 0.2721 1 0.0230 1 1 5844/ 58.44%| 13.46295
MSEASVT 0.2775 1 0.0107 1 1 4231}42.31%| 13.45073
MSESET 1.1773 0 0.2407 1 1 3174|31.74%| 13.68067
Run Mean 0.6979 — 0.0170 1 1 0| 0.00%| 13.45696
MSEAT 0.2042 1 -0.0877 1 1 6896| 68.96%| 13.35227

6 |MSEAET 0.2090 1 -0.0808 1 1 64441 64.44%| 13.35920
MSEASVT 0.2135 1 -0.1073 1 1 45491 45.49%| 13.33275
MSESET 0.9996 0 0.5324 1 0 3225}32.25%] 13.97240
Run Mean 0.8929 — 0.1333 1 1 0| 0.00%| 13.57335
MSEAT 0.4653 1 -0.0849 1 1 6063| 60.63%| 13.35515

7 |MSEAET 0.4654 1 -0.0928 1 1 6025{60.25%| 13.34725
MSEASVT 0.4862 1 -0.1059 1 1 4496)44.96%] 13.33405
MSESET 1.4108 0 0.6719 1 0 3344|33.44%| 14.11186
Run Mean 0.5962 — -0.6416 1 0 0] 0.00%| 12.79845
MSEAT 0.0789 1 -0.1123 1 1 54841 54.84%| 13.32774

8 |MSEAET 0.0813 1 -0.1351 1 1 5452]54.52%| 13.30485
MSEASVT 0.0983 1 -0.1807 1 1 3989]39.89%| 13.25928
MSESET 0.8554 0 -0.9434 0 0 34601 34.60%] 12.49660
Run Mean 0.8140 — -0.1625 1 1 0} 0.00%| 13.27752
MSEAT 0.2293 1 0.1056 1 1 5410]| 54.10%| 13.54562

9 |MSEAET 0.2235 1 0.1033 1 1 5724|57.24%| 13.54329
MSEASVT 0.2527 1 0.0832 1 1 4011]40.11%] 13.52324
MSESET 1.0977 0 -0.3182 1 0 3708}37.08%| 13.12177
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Model: E, /E, /4 Replication Deletion w/Empty & Idle
Est. Less +5%0 | +2% 6 Avg %

Exp#| Method |1/2 Width} Y/N Bias Trunc Pt.]| Trunc |Estimate
Run Mean 0.6559 — -0.2322 1 1 0] 0.00%| 13.20780
MSEAT 0.2536 1 -0.0105 1 1 6358 63.58%| 13.42947

10 |MSEAET 0.2543 1 -0.0187 1 1 6153]61.53%| 13.42134
MSEASVT 0.2556 1 -0.0325 1 1 5267|52.67%| 13.40751
MSESET 1.0683 0 0.0688 1 1 3361}33.61%| 13.50878
Run Mean 0.9607 — 0.0323 1 1 0] 0.00%| 13.47227
MSEAT 0.2518 1 0.0332 1 1 6332 63.32%} 13.47320

11 |MSEAET 0.2527 1 0.0265 1 1 64691 64.69%| 13.46647
MSEASVT 0.2566 1 -0.0003 1 1 5062] 50.62%| 13.43973
MSESET 1.2228 0 0.6294 1 0 3110§31.10%| 14.06945
Run Mean 0.6695 — -0.1390 1 1 0] 0.00%| 13.30097
MSEAT 0.1671 1 -0.1166 1 1 64741 64.74%| 13.32337

12 |MSEAET 0.1682 1 -0.1178 1 1 6264 62.64%] 13.32218
MSEASVT 0.1791 1 -0.1714 1 1 5357]53.57%| 13.26858
MSESET 1.0718 0 -0.0130 1 1 3298|32.98%} 13.42699
Run Mean 0.7040 — -0.3175 1 0 0] 0.00%| 13.12250
MSEAT 0.2420 1 0.0659 1 1 6385]63.85%| 13.50586

13 |MSEAET 0.2434 1 0.0538 1 1 5741} 57.41%| 13.49385
MSEASVT 0.2460 1 0.0664 1 1 4132|41.32%] 13.50640
MSESET 1.3877 0 -0.2751 1 0 3425|34.25%| 13.16485
Run Mean 0.5994 — -0.5437 1 0 0] 0.00%| 12.89633
MSEAT 0.2443 1 -0.0520 1 1 62211 62.21%| 13.38796

14 |MSEAET 0.2445 1 -0.0588 1 1 5692]56.92%] 13.38122
MSEASVT 0.2463 1 -0.0557 1 1 4702147.02%| 13.38432
MSESET 0.8853 0 -0.6667 0 0 3309]33.09%| 12.77332
Run Mean 0.8581 — -0.1527 1 1 0] 0.00%| 13.28725
MSEAT 0.1931 1 -0.2446 1 1 5692|56.92%] 13.19540

15 [MSEAET 0.1921 1 -0.2533 1 1 5818|58.18%] 13.18674
MSEASVT 0.2048 1 -0.2305 1 1 4686}46.86%| 13.20949
MSESET 1.0573 0 -0.1020 1 1 3178} 31.78%| 13.33798
Run Mean 0.6616 — -0.5655 1 0 0] 0.00%} 12.87454
MSEAT 0.3784 1 -0.0346 1 1 5011}50.11%] 13.40541

16 |MSEAET 0.3799 1 -0.0384 1 1 4511145.11%] 13.40160
MSEASVT 0.3789 1 -0.0449 1 1 3855/38.55%| 13.39513
MSESET 0.9547 0 -1.0035 0 0 3025}30.25%| 12.43645
Run Mean 1.0375 — 0.1463 1 1 0] 0.00%] 13.58632
MSEAT 0.1604 1 -0.0072 1 1 6854 68.54%] 13.43276

17 |MSEAET 0.1609 1 -0.0146 1 1 6790 67.90%] 13.42542
MSEASVT 0.1685 1 -0.0361 1 1 5045]50.45%] 13.40389
MSESET 1.1561 0 0.1196 1 1 3579} 35.79%| 13.55960
Run Mean 0.6128 — 0.1291 1 1 0] 0.00%| 13.56912
MSEAT 0.0061 1 -0.0616 1 1 6371163.71%| 13.37841

18 |MSEAET 0.0018 1 -0.0581 1 1 6578| 65.78%| 13.38188
MSEASVT 0.0497 1 -0.0208 1 1 3856|38.56%|] 13.41916
MSESET 0.8990 0 0.0584 1 1 2887|28.87%| 13.49839
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Model: E,/E,/4 Replication Deletion w/Empty & Idle
Est. Less +5%0 | +2% 6 Avg %

Exp#| Method [1/2 Width| Y/N Bias Trunc Pt.| Trunc |[Estimate
Run Mean 0.7925 — -0.1890 1 1 0} 0.00%} 13.25097
MSEAT 0.0427 1 -0.0536 1 1 5618]56.18%| 13.38644

19 |MSEAET 0.0546 1 -0.0555 1 1 5828 58.28%| 13.38447
MSEASVT 0.0558 1 -0.0927 1 1 4626]46.26%| 13.34728
MSESET 1.3894 0 0.3649 1 0 3354} 33.54%| 13.80492
Run Mean 0.6945 — -0.1121 1 1 0| 0.00%| 13.32791
MSEAT 0.1241 1 -0.1102 1 1 6684] 66.84%| 13.32985

20 IMSEAET 0.1228 1 -0.1294 1 1 6562} 65.62%} 13.31062
MSEASVT 0.1312 1 -0.1447 1 1 4339]43.39%| 13.29532
MSESET 1.0446 0 -0.1063 1 1 3777137.77%| 13.33366
Run Mean 1.0031 — 0.3688 1 0 0} 0.00%| 13.80878
MSEAT 0.2454 1 0.0250 1 1 6133]61.33%]| 13.46497

21 |MSEAET 0.2461 1 0.0141 1 1 6298]62.98%| 13.45408
MSEASVT 0.2492 1 0.0151 1 1 3878} 38.78%} 13.45513
MSESET 1.0545 0 0.0549 1 1 3202]32.02%| 13.49490
Run Mean 0.7707 — -0.1529 1 1 0| 0.00%| 13.28712
MSEAT 0.2272 1 -0.2893 1 0 5435|54.35%] 13.15071

22 [MSEAET 0.2285 1 -0.2887 1 0 5589|55.89%] 13.15134
MSEASVT 0.2253 1 -0.3094 1 0 3990] 39.90%| 13.13056
MSESET 1.0477 0 -0.7285 0 0 3187}31.87%| 12.71154
Run Mean 0.8687 — -0.3716 1 0 0| 0.00%| 13.06838
MSEAT 0.1705 1 -0.2257 1 1 6313]63.13%| 13.21431

23 |MSEAET 0.1718 1 -0.2144 1 1 6684]| 66.84%| 13.22556
MSEASVT 0.1844 1 -0.2018 1 1 4914|49.14%| 13.23821
MSESET 1.1242 0 -0.3963 1 0 32521 32.52%| 13.04368
Run Mean 1.0175 — 0.6646 1 0 0] 0.00%| 14.10464
MSEAT 0.0832 1 -0.0227 1 1 6822]68.22%] 13.41732

24 |MSEAET 0.0826 1 0.0153 1 1 64291 64.29%| 13.45526
MSEASVT 0.0897 1 0.0010 1 1 4164}41.64%| 13.44103
MSESET 1.1041 0 0.8354 0 0 3792|37.92%} 14.27544
Run Mean 0.7925 — -0.1890 1 1 0| 0.00%| 13.25097
MSEAT 0.0427 1 -0.0536 1 1 5618]56.18%| 13.38644

25 |MSEAET 0.0546 1 -0.0555 1 1 5828] 58.28%| 13.38447
MSEASVT 0.0558 1 -0.0927 1 1 4626]46.26%| 13.34728
MSESET 1.3894 0 0.3649 1 0 3354|33.54%| 13.80492
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Model: U/Ln/3 Replication Deletion w / Initial Q Length
Est. Less +5%0 1| +2%6 Avg %

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.] Trunc |Estimate
Run Mean 0.1549 — 0.0989 1 0 0} 0.00%| 2.35991
MSEAT 0.0021 1 0.0275 1 1 18534|61.78%| 2.28851

1 |MSEAET 0.0283 1 0.0066 1 1 21868]72.89%| 2.26761
MSEASVT 0.0093 1 0.0209 1 1 15796{52.65%| 2.28191
MSESET 0.2310 0 0.0935 1 0 8196}27.32%| 2.35451
Run Mean 0.1586 — 0.1158 0 0 0| 0.00%| 2.37680])
MSEAT 0.0004 1 0.0266 1 | 22097{73.66%| 2.28760

2 |MSEAET 0.0422 1 0.0245 1 1 24166) 80.55%| 2.28551
MSEASVT 0.0089 1 0.0234 1 1 14391|47.97%| 2.28443
MSESET 0.1553 1 0.0980 1 0 8228|27.43%| 2.35899
Run Mean 0.1673 — 0.0451 1 1 0| 0.00%| 2.30609
MSEAT 0.0709 1 0.0623 1 0 20573]68.58%| 2.32328

3 [MSEAET 0.0873 1 0.0633 1 0 22706 75.69%} 2.32435
MSEASVT 0.0742 1 0.0626 1 0 13111]43.70%] 2.32363
MSESET 0.1755 0 0.0179 1 1 10264}34.21%| 2.27891
Run Mean 0.1077 — 0.0579 | 0 0] 0.00%| 2.31891
MSEAT 0.0157 1 0.0188 1 1 16997 56.66%| 2.27978

4 |MSEAET 0.0407 1 0.0074 1 1 21942]73.14%] 2.26841
MSEASVT 0.0157 1 0.0156 1 1 12799]42.66%| 2.27659
MSESET 0.0785 | -0.0221 1 1 6378|21.26%| 2.23892
Run Mean 0.0963 — 0.0600 1 0 0| 0.00%] 2.32100
MSEAT 0.0001 1 0.0265 1 1 17187{57.29%| 2.28751

5 |MSEAET 0.0288 1 0.0349 1 1 21416}71.39%| 2.29593
MSEASVT 0.0010 1 0.0269 1 1 11599|38.66%| 2.28787
MSESET 0.1351 0 0.1320 0 0 9375|31.25%f 2.39303
Run Mean 0.1007 — 0.0752 1 0 0] 0.00%| 2.33618
MSEAT 0.0121 1 0.0203 1 1 16488|54.96%| 2.28134

6 |MSEAET 0.0391 1 0.0056 1 1 21419|71.40%| 2.26662
MSEASVT 0.0161 1 0.0242 1 1 10489]34.96%) 2.28516
MSESET 0.1811 0 0.1182 0 0 10778{35.93%| 2.37920
Run Mean 0.1660 — 0.1045 1 0 0] 0.00%| 2.36550
MSEAT 0.0003 1 0.0263 1 1 22177|73.92%| 2.28725

7 |MSEAET 0.0397 1 0.0304 1 1 23604 78.68%| 2.29143
MSEASVT 0.0072 1 0.0297 1 1 17452{58.17%| 2.29070
MSESET 0.2253 0 0.1972 0 0 10775/35.92%| 2.45816
Run Mean 0.1315 — 0.0943 1 0 0] 0.00%}| 2.35527
MSEAT 0.0294 1 0.0426 1 1 23824|79.41%| 2.30355

8 |MSEAET 0.0659 1 0.0492 1 0 24243180.81%| 2.31024
MSEASVT 0.0308 1 0.0388 1 1 23614178.71%| 2.29979
MSESET 0.1786 0 0.1528 0 0 8732|29.11%} 2.41383
Run Mean 0.1185 — 0.0180 1 1 0] 0.00%) 2.27900
MSEAT 0.0003 1 0.0264 1 1 21646]72.15%| 2.28737

9 |MSEAET 0.0461 1 0.0087 1 1 22739)75.80%| 2.26969
MSEASVT 0.0234 1 0.0090 1 1 13503|45.01%} 2.27000
MSESET 0.1688 0 -0.0129 1 1 7307|24.36%| 2.24806
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Model: U/Ln/3 Replication Deletion w/ Initial Q Length
Est. Less +5%0 | +2% 0 Avg %

Exp#| Method {1/2 Width] Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.0999 — 0.0479 1 0 ol 0.00%| 2.30895
MSEAT 0.0020 1 0.0254 1 1 17995} 59.98%| 2.28645

10 |MSEAET 0.0280 1 0.0393 1 1 22276]74.25%| 2.30028
MSEASVT 0.0405 1 0.0046 1 1 13934|46.45%| 2.26565
MSESET 0.1820 0 0.1445 0 0 11042|36.81%| 2.40545
Run Mean 0.0568 — 0.0716 1 0 0] 0.00%| 2.33256
MSEAT 0.0016 1 0.0266 1 1 15829|52.76%| 2.28758

11 |MSEAET 0.0454 1 -0.0114 1 1 21522]71.74%| 2.24956
MSEASVT 0.0318 1 0.0481 1 0 5456|18.19%] 2.30909
MSESET 0.1508 0 0.0220 1 1 11295{37.65%| 2.28303
Run Mean 0.0777 — -0.0299 1 1 o] 0.00%| 2.23110
MSEAT 0.0000 1 0.0265 1 1 13458|44.86%} 2.28748

12 |MSEAET 0.0127 1 0.0364 1 1 21009]70.03%| 2.29741
MSEASVT 0.0002 1 0.0263 1 1 10883|36.28%] 2.28731
MSESET 0.0773 1 0.0535 1 0 10157/33.86%| 2.31447
Run Mean 0.1274 — 0.1434 0 0 0] 0.00%| 2.40443
MSEAT 0.0026 1 0.0257 1 1 24366}81.22%] 2.28667

13 |MSEAET 0.0317 1 0.0105 1 1 26390]87.97%| 2.27155
MSEASVT 0.0110 1 0.0312 1 1 14975[49.92%} 2.29216
MSESET 0.1495 0 0.1751 0 0 10953|36.51%| 2.43613
Run Mean 0.1020 — -0.0478 1 0 0| 0.00%} 2.21321
MSEAT 0.0002 1 0.0265 1 1 19002} 63.34%] 2.28749

14 |MSEAET 0.0308 1 0.0007 1 1 22031]73.44%] 2.26173
MSEASVT 0.0020 1 0.0250 1 1 15485]51.62%| 2.28597
MSESET 0.1313 0 -0.0776 1 0 8179|27.26%| 2.18343
Run Mean 0.1487 — 0.1353 0 0 0| 0.00%| 2.39625
MSEAT 0.0470 1 0.0028 1 1 20853} 69.51%| 2.26377

15 |MSEAET 0.0637 1 0.0012 1 1 24433|81.44%| 2.26223
MSEASVT 0.0488 1 0.0081 1 1 18670]62.23%| 2.26907
MSESET 0.2103 0 0.3062 0 0 9797| 32.66%| 2.56720
Run Mean 0.1816 — 0.1770 0 0 0] 0.00%| 2.43796
MSEAT 0.0027 1 0.0243 1 1 22154|73.85%] 2.28534

16 |MSEAET 0.0287 1 0.0075 1 1 24913|83.04%| 2.26852
MSEASVT 0.0071 1 0.0286 1 1 16866|56.22%] 2.28956
MSESET 0.2334 0 0.2102 0 0 8920]29.73%| 2.47120
Run Mean 0.1030] — 0.0314 1 1 0] 0.00%| 2.29241
MSEAT 0.0154 1 0.0189 1 1 17426]58.09%| 2.27990

17 IMSEAET 0.0148 1 0.0261 1 1 22280§74.27%) 2.28711
MSEASVT 0.0161 1 0.0204 1 1 11508]38.36%| 2.28141
MSESET 0.1110 0 0.0826 1 0 6645]22.15%| 2.34362
Run Mean 0.1509 — 0.1130 1 0 0] 0.00%| 2.37396
MSEAT 0.0328 1 0.0010 1 1 15075(50.25%] 2.26199

18 |MSEAET 0.0604 1 -0.0472 1 0 20058] 66.86%} 2.21381
MSEASVT 0.0333 1 0.0025 1 1 11165]37.22%| 2.26349
MSESET 0.1339 1 -0.0572 1 0 10111]33.70%| 2.20385
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Model: U/Ln/3 Replication Deletion w/ Initial Q Length
Est. Less +5%0 | +t2%0 Avg %

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.| Trunc {Estimate
Run Mean 0.1563 — 0.0736 1 0 0] 0.00%| 2.33460
MSEAT 0.0337 1 0.0092 1 1 13864{46.21%| 2.27024

19 |MSEAET 0.0588 1 -0.0013 1 1 18249| 60.83%} 2.25970
MSEASVT 0.0343 1 0.0115 1 1 9660] 32.20%] 2.27247
MSESET 0.2008 0 -0.0385 1 1 8096]26.99%| 2.22248
Run Mean 0.1400 — 0.1255 0 0 0| 0.00%} 2.38652
MSEAT 0.0007 1 0.0262 1 1 24084|80.28%| 2.28721

20 |MSEAET 0.0270 1 0.0048 1 1 25495|84.98%| 2.26579
MSEASVT 0.0065 1 0.0221 1 1 18368]61.23%| 2.28307
MSESET 0.1929 0 0.1807 0 0 8688} 28.96%| 2.44167
Run Mean 0.0953 —_ 0.1315 0 0 0] 0.00%| 2.39252
MSEAT 0.0002 1 0.0264 1 1 15397|51.32%| 2.28738

21 |MSEAET 0.0309 1 0.0096 1 1 20964| 69.88%| 2.27058
MSEASVT 0.0023 1 0.0268 1 1 8058|26.86%| 2.28784
MSESET 0.1720 0 0.2279 0 0 11422]38.07%| 2.48891
Run Mean 0.0926 — -0.0348 1 1 0| 0.00%| 2.22622
MSEAT 0.0003 1 0.0266 1 1 20384} 67.95%] 2.28758

22 |MSEAET 0.0410 1 -0.0126 1 1 23198|77.33%| 2.24840
MSEASVT 0.0126 1 0.0249 1 1 12116{40.39%| 2.28593
MSESET 0.1251 0 -0.0259 1 1 9446]31.49%| 2.23515
Run Mean 0.0989 — 0.0328 1 1 0] 0.00%| 2.29376
MSEAT 0.0237 1 0.0106 1 1 15202{50.67%| 2.27157

23 |MSEAET 0.0520 1 -0.0278 1 1 20882} 69.61%] 2.23322
MSEASVT 0.0237 1 0.0106 1 1 11974139.91%| 2.27165
MSESET 0.1784 0 -0.0409 1 1 10029{33.43%| 2.22010
Run Mean 0.0690 — -0.0237 1 1 0} 0.00%| 2.23730
MSEAT 0.0128 1 0.0199 1 1 15230]50.77%| 2.28094

24 |MSEAET 0.0610 1 0.0208 1 1 19726{65.75%| 2.28179
MSEASVT 0.0130 1 0.0204 1 1 10115}33.72%| 2.28136
MSESET 0.1573 0 -0.0815 1 0 8605]28.68%| 2.17947
Run Mean 0.0832 — 0.0249 1 1 0| 0.00%| 2.28587
MSEAT 0.0001 1 0.0264 1 1 11644{38.81%| 2.28741

25 |MSEAET 0.0161 1 0.0128 | 1 19697] 65.66%] 2.27376
MSEASVT 0.0037 1 0.0243 1 1 10062| 33.54%| 2.28526
MSESET 0.1297 0 -0.0538 1 0 9061]30.20%| 2.20716
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Model: U/Ln/3 Replication Deletion w/Empty & Idle
Est. Less +5%0 | +2% 0 Avg %

Exp#| Method |1/2 Widthj Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.1531 — 0.0967 1 0 0] 0.00%| 2.35768
MSEAT 0.0054 1 0.0292 1 1 18096| 60.32%| 2.29020

1 [MSEAET 0.0197 1 0.0187 1 1 22166| 73.89%| 2.27968
MSEASVT 0.0066 1 0.0228 1 1 146411 48.80%| 2.28382
MSESET 0.2301 0 0.0840 1 0 8225} 27.42%| 2.34500
Run Mean 0.1545 — 0.1038 1 0 0] 0.00%| 2.36476
MSEAT 0.0004 1 0.0266 1 1 21718| 72.39%| 2.28764

2 |MSEAET 0.0424 1 0.0274 1 1 23819 79.40%| 2.28839
MSEASVT 0.0090 1 0.0233 1 1 13716| 45.72%) 2.28429
MSESET 0.1384 1 0.0752 1 0 8629] 28.76%| 2.33619
Run Mean 0.1667 — 0.0495 1 0 0 0.00%| 2.31047
MSEAT 0.0243 1 0.0391 1 1 20866| 69.55%| 2.30011

3 |MSEAET 0.0648 1 0.0402 1 1 22705| 75.68%| 2.30122
MSEASVT 0.0247 1 0.0377 1 1 15462) 51.54%| 2.29867
MSESET 0.1681 0 0.0123 1 1 11537| 38.46%| 2.27326
Run Mean 0.0964 — 0.0413 1 1 0{ 0.00%] 2.30231
MSEAT 0.0157 1 0.0187 1 1 18227| 60.76%| 2.27974

4 |MSEAET 0.0405 1 0.0053 1 1 22346| 74.49%| 2.26631
MSEASVT 0.0158 1 0.0157 1 1 11212| 37.37%| 2.27667
MSESET 0.0811 1 -0.0522 1 0 - 7515{ 25.05%] 2.20882
Run Mean 0.0954 — 0.0460 1 0 0] 0.00%| 2.30697
MSEAT 0.0000 1 0.0265 1 1 14330| 47.77%| 2.28747

5 |MSEAET 0.0192 1 0.0308 1 1 20103| 67.01%| 2.29180
MSEASVT 0.0016 1 0.0256 1 1 10755] 35.85%| 2.28664
MSESET 0.1311 0 0.0847 1 0 9159| 30.53%| 2.34566
Run Mean 0.1005 — 0.0889 1 0 0| 0.00%| 2.34993
MSEAT 0.0120 1 0.0201 1 1 14870 49.57%| 2.28112

6 |MSEAET 0.0390 1 0.0076 1 1 20644] 68.81%| 2.26864
MSEASVT 0.0161 1 0.0248 1 1 10675 35.58%| 2.28578
MSESET 0.1815 0 0.1254 0 0 10736] 35.79%| 2.38638
Run Mean 0.1713 — 0.0955 1 0 0| 0.00%| 2.35654
MSEAT 0.0001 1 0.0265 1 1 22830| 76.10%| 2.28746

7 |MSEAET 0.0355 1 0.0225 1 1 25274| 84.25%| 2.28346
MSEASVT 0.0035 1 0.0242 1 1 18677| 62.26%| 2.28522
MSESET 0.2372 0 0.1919 0 0 10580f 35.27%| 2.45287
Run Mean 0.1445 — 0.1088 1 0 0] 0.00%| 2.36980
MSEAT 0.0683 1 0.0629 1 0 23719 79.06%| 2.32387

8 |MSEAET 0.0800 1 0.0778 1 0 24024{ 80.08%| 2.33876
MSEASVT 0.0711 1 0.0543 1 0 22091| 73.64%| 2.31529
MSESET 0.1856 0 0.1720 0 0 8212 27.37%| 2.43300
Run Mean 0.1378 — 0.0412 1 1 0| 0.00%| 2.30215
MSEAT 0.0004 1 0.0264 1 1 22220} 74.07%| 2.28736

9 |MSEAET 0.0461 1 0.0073 1 1 23469| 78.23%| 2.26833
MSEASVT 0.0234 1 0.0093 1 1 14919 49.73%| 2.27029
MSESET 0.1713 0 0.0232 1 1 7224| 24.08%| 2.28424
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Model: U/Ln/3 Replication Deletion w/ Empty & Idle
Est. Less +5%0 | £2% 6 Avg %

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.1049 — 0.0453 1 0 0] 0.00%] 2.30631
MSEAT 0.0005 1 0.0262 1 1 19212| 64.04%| 2.28718

10 |MSEAET 0.0275 1 0.0412 1 | 227741 75.91%| 2.30218
MSEASVT 0.0023 1 0.0257 1 1 11176} 37.25%| 2.28674
MSESET 0.2036 0 0.1557 0 0 10818] 36.06%| 2.41666
Run Mean 0.0617 — 0.0473 1 0 0 0.00%| 2.30829
MSEAT 0.0030 1 0.0250 1 1 16661} 55.54%] 2.28601

11 |MSEAET 0.0427 1 -0.0096 1 1 16951] 56.50%} 2.25139
MSEASVT 0.0331 1 0.0451 1 1 5317) 17.72%| 2.30612
MSESET 0.1612 0 -0.0103 1 1 10932] 36.44%] 2.25066
Run Mean 0.0900f — 0.0072 1 1 0] 0.00%| 2.26823
MSEAT 0.0036 1 0.0283 1 1 19565] 65.22%| 2.28934

12 [MSEAET 0.0107 1 0.0353 1 1 24116| 80.39%] 2.29633
MSEASVT 0.0107 1 0.0383 1 1 9486} 31.62%| 2.29929
MSESET 0.1049 0 0.1156 0 0 10871) 36.24%| 2.37658
Run Mean 0.1279 — 0.1261 0 0 0] 0.00%| 2.38708
MSEAT 0.0552 1 -0.0013 1 1 183571 61.19%| 2.25969

13 |MSEAET 0.0670 1 -0.0062 1 1 23047} 76.82%| 2.25475
MSEASVT 0.0573 1 0.0047 1 1 11556) 38.52%} 2.26570
MSESET 0.1578 0 0.1425 0 0 11254| 37.51%| 2.40351
Run Mean 0.0797 — -0.0128 1 1 0| 0.00%| 2.24823
MSEAT 0.0001 1 0.0265 1 1 15787} 52.62%] 2.28753

14 IMSEAET 0.0299 1 -0.0024 1 1 21426| 71.42%| 2.25856
MSEASVT 0.0006 1 0.0258 1 1 13072| 43.57%| 2.28680
MSESET 0.1289 0 -0.0411 1 1 11205] 37.35%] 2.21990
Run Mean 0.1425 — 0.1287 0 0 0] 0.00%] 2.38970
MSEAT 0.0244 1 0.0145 1 1 19441] 64.80%] 2.27549

15 |MSEAET 0.0461 1 0.0031 1 1 23844| 79.48%| 2.26408
MSEASVT 0.0266 1 0.0199 1 1 15260] 50.87%| 2.28094
MSESET 0.2047 0 0.3156 0 0 10839] 36.13%| 2.57661
Run Mean 0.1568] — 0.1529] © 0 0] 0.00%| 2.41393
MSEAT 0.0007 1 0.0259 1 1 19303] 64.34%| 2.28692

16 |MSEAET 0.0289 1 0.0069 1 1 23397| 77.99%] 2.26793
MSEASVT 0.0007 1 0.0256 1 1 16840 56.13%] 2.28663
MSESET 0.1628 0 0.1613 0 0 7757| 25.86%| 2.42233
Run Mean 0.1115 — 0.0205 1 1 0] 0.00%] 2.28152
MSEAT 0.0039 1 0.0244 1 1 18914] 63.05%| 2.28544

17 |MSEAET 0.0154 1 0.0272 1 1 22945| 76.48%| 2.28821
MSEASVT 0.0440 1 0.0048 1 1 11127] 37.09%]| 2.26579
MSESET 0.1616 0 0.0781 1 0 8273] 27.58%| 2.33906
Run Mean 0.1341 — 0.1344 0 0 0] 0.00%| 2.39540
MSEAT 0.0225 1 0.0156 1 1 13829 46.10%| 2.27665

18 |MSEAET 0.0490 1 -0.0236 1 1 20021} 66.74%] 2.23741
MSEASVT 0.0226 1 0.0148 1 1 10386| 34.62%| 2.27577
MSESET 0.1217 1 -0.0239 1 1 9335| 31.12%] 2.23711
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Model: U/Ln/3 Replication Deletion w/Empty & Idle
Est. Less +5%0 | +2%0 Avg %

Exp#| Method |1/2 Width{ Y/N Bias Trunc Pt.] Trunc |Estimate
Run Mean 0.1496 — 0.0844 1 0 0] 0.00%{ 2.34540
MSEAT 0.0337 1 0.0093 1 1 15726] 52.42%) 2.27035

19 |MSEAET 0.0604 1 0.0025 1 1 19715] 65.72%| 2.26348
MSEASVT 0.0342 1 0.0109 1 1 10126] 33.75%] 2.27190
MSESET 0.1992 0 -0.0263 1 1 7198] 23.99%] 2.23469
Run Mean 0.1375 — 0.1138 0 0 0] 0.00%} 2.37480
MSEAT 0.0240 1 0.0377 1 1 18279 60.93%| 2.29873

20 |[MSEAET 0.0582 1 0.0259 1 1 17199] 57.33%| 2.28687
MSEASVT 0.0258 1 0.0333 1 1 15611f 52.04%] 2.29429
MSESET 0.1936 0 0.1825 0 0 9751| 32.50%| 2.44350
Run Mean 0.1029 — 0.1457 0 0 0| 0.00%| 2.40673
MSEAT 0.0001 1 0.0264 1 1 16177] 53.92%| 2.28743

21 |MSEAET 0.0283 1 0.0123 1 1 17210 57.37%| 2.27328
MSEASVT 0.0024 1 0.0264 1 1 10761] 35.87%] 2.28741
MSESET 0.1651 0 0.2377 0 0 10468] 34.89%| 2.49869
Run Mean 0.0841 — -0.0562 1 0 0] 0.00%] 2.20480
MSEAT 0.0001 1 0.0265 1 1 15681] 52.27%) 2.28754

22 |MSEAET 0.0406 1 -0.0062 1 1 20802{ 69.34%] 2.25475
MSEASVT 0.0142 1 0.0258 1 1 11457} 38.19%] 2.28680
MSESET 0.1012 0 -0.0479 1 0 8741] 29.14%| 2.21313
Run Mean 0.1216 —_ 0.0708 1 0 0| 0.00%| 2.33178
MSEAT 0.0081 1 0.0223 1 1 21646} 72.15%] 2.28334

23 |[MSEAET 0.0400 1 -0.0162 1 1 24443] 81.48%] 2.24482
MSEASVT 0.0081 1 0.0224 1 1 13240| 44.13%| 2.28337
MSESET 0.1693 0 0.0175 1 1 10078] 33.59%| 2.27846
Run Mean 0.0615 — -0.0103 1 1 0] 0.00%| 2.25071
MSEAT 0.0128 1 0.0197 1 1 13679] 45.60%} 2.28068

24 |MSEAET 0.0636 0 0.0254 1 1 18779] 62.60%| 2.28642
MSEASVT 0.0138 1 0.0178 1 1 6537| 21.79%| 2.27878
MSESET 0.1564 0 -0.0821 1 0 8520 28.40%] 2.17895
Run Mean 0.0743 — 0.0356 1 | 0] 0.00%] 2.29663
MSEAT 0.0001 1 0.0265 1 1 14789] 49.30%] 2.28754

25 |MSEAET 0.0151 1 0.0188 1 1 21738] 72.46%| 2.27979
MSEASVT 0.0071 1 0.0213 1 1 72731 24.24%] 2.28226
MSESET 0.1261 0 -0.0420 1 1 8934) 29.78%| 2.21899
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Model: E/E/4 Replication Deletion w/ Initial Q Length (Large Expected QL)

Est. Less +590 | +2% 6 Avg %

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 14.9801 — -12.9680 0 0 0| 0.00%) 79.82801
MSEAT 4.4954 1 -4.2287 1 1 11200]53.34%] 88.56725

1 |MSEAET 4.5651 1 -4.5230 1 1 11710} 55.76%| 88.27301
MSEASVT 49144 1 -4.4720 1 1 10491|49.96%| 88.32401
MSESET 22.8613 0 -13.7161 0 0 7136{33.98%| 79.07994
Run Mean 14.6992 —_ -26.9557 0 0 0| 0.00%| 65.84031
MSEAT 8.5041 1 -11.3637 0 0 15453}73.59%| 81.43226

2 |MSEAET 8.3696 | -11.7724 0 0 16128|76.80%| 81.02357
MSEASVT 8.4994 1 -11.3721 0 0 15454173.59%| 81.42388
MSESET 24.6169 0 -25.3699 0 0 7834|37.30%| 67.42605
Run Mean 11.3189 — -22.1734 0 0 0} 0.00%| 70.62255
MSEAT 7.4895 1 -8.8201 1 0 12135|57.78%| 83.97594

3 |MSEAET 7.3292 1 -9.5961 0 0 11182{53.25%| 83.19986
MSEASVT 7.4883 1 -8.8225 1 0 11247153.56%f 83.97350
MSESET 8.5296 1 -33.1382 0 0 8968 42.70%| 59.65775
Run Mean 6.9661 —_ -21.4342 0 0 0] 0.00%| 71.36177
MSEAT 7.6629 0 -8.8876 1 0 10346|49.27%| 83.90841

4 |MSEAET 7.3935 0 -9.7850 0 0 10030{47.76%| 83.01105
MSEASVT 7.6612 0 -8.8911 1 0 9317{44.36%| 83.90493
MSESET 17.9035 0 -25.8918 0 0 7298]34.75%| 66.90415
Run Mean 13.9444 — -13.1860 0 0 0] 0.00%| 79.60999
MSEAT 2.0879 1 -1.1747 1 1 12681]60.39%| 91.62126

5 |MSEAET 2.2970 1 -2.2474 1 1 12115|57.69%| 90.54861
MSEASVT 2.0941 1 -1.4702 1 1 12565 59.83%| 91.32579
MSESET 15.5009 0 -22.9847 0 0 8043{38.30%| 69.81132
Run Mean 18.9944 — -4.0270 1 1 0] 0.00%| 88.76904
MSEAT 6.8036 1 1.4789 1 1 12358]58.85%| 94.27494

6 MSEAET 6.9868 1 1.0452 1 1 12774] 60.83%| 93.84125
MSEASVT 6.8051 1 1.4636 1 1 11603{55.25%| 94.25963
MSESET 32.1971 0 8.6013 1 0 8346]39.74%|101.39730
Run Mean 18.5317 — -3.6973 1 1 0} 0.00%| 89.09866
MSEAT 7.9842 1 -5.9597 1 0 8769]|41.76%| 86.83633

7 |MSEAET 8.2914 1 -5.8474 1 0 8713|41.49%| 86.94863
MSEASVT 7.9645 1 -6.0260 1 0 8714]41.49%| 86.76995
MSESET 40.2855 0 -3.6440 1 1 8564|40.78%| 89.15201
Run Mean 27.8142 —_ 8.8785 1 0 0} 0.00%|101.67448
MSEAT 0.2843 1 -0.2631 1 1 14724170.12%| 92.53291

8 |MSEAET 1.1382 1 -0.9094 1 1 15964|76.02%| 91.88663
MSEASVT 0.2841 1 -0.2631 1 1 14724{70.12%| 92.53291
MSESET 24.9722 1 17.9074 0 0 8761{41.72%|110.70342
Run Mean 22.6046 — -11.2363 0 0 0] 0.00%| 81.55974
MSEAT 6.6396 1 -5.1933 1 0 14342] 68.29%| 87.60270

9 IMSEAET 6.5827 1 -5.6194 1 0 13560]64.57%| 87.17657
MSEASVT 6.6424 1 -5.1846 1 0 14497|69.03%] 87.61137
MSESET 23.0943 0 -8.9765 1 0 8517}40.56%| 83.81953
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Model: E/E/4 Replication Deletion w/ Initial Q Length (Large Expected QL)

Est. Less +5%0 | +2% 0 Avg %

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 14.6792 — -17.3060 0 0 0| 0.00%| 75.49003
MSEAT 4.2286 1 0.1261 1 1 12496} 59.50%| 92.92206

10 |MSEAET 4.3784 1 -0.3576 1 1 13113]62.44%| 92.43844
MSEASVT 4.2287 1 0.1221 1 1 11361]54.10%| 92.91811
MSESET 23.3259 0 -9.5298 0 0 9502{45.25%| 83.26617
Run Mean 25.1743 — 7.6068 1 0 0} 0.00%1100.40276
MSEAT 9.0132 1 3.4488 1 1 13836) 65.89%| 96.24476

11 |MSEAET 9.4346 1 2.0804 1 1 13351] 63.58%] 94.87639
MSEASVT 9.0109 1 3.4630 1 1 12576]59.89%] 96.25904
MSESET 33.4846 0 16.1674 0 0 75714 36.05%|108.96340
Run Mean | 25.6295| — 0.1650] 1 1 0| 0.00%] 92.63105
MSEAT 3.5871 1 -2.8514 1 1 12943|61.63%| 89.94460

12 |MSEAET 3.5062 1 -3.8101 1 1 12302] 58.58%| 88.98591
MSEASVT 3.5863 1 -2.8538 1 1 11668]55.56%] 89.94218
MSESET 27.3362 0 1.8789 1 1 9222143.91%| 94.67488
Run Mean | 18.5414] — 9.1790] 1 0 0] 0.00%]| 83.61697
MSEAT 3.8222 1 -0.1653 1 1 15664]74.59%| 92.63066

13 |MSEAET 3.9249 1 -0.4621 1 1 14273167.97%| 92.33389
MSEASVT 3.8223 1 -0.1738 1 1 152351 72.55%| 92.62221
MSESET 29.1155 0 -5.2470 1 0 9445| 44.98%| 87.54901
Run Mean 8.1413 — -19.8063 0 0 0] 0.00%| 72.98974
MSEAT 4.9803 1 -2.6696 1 1 13580] 64.67%] 90.12638

14 |MSEAET 4.9046 1 -3.2838 1 1 12234]58.26%| 89.51216
MSEASVT 4.9760 1 -2.6894 1 1 13254 63.11%] 90.10662
MSESET 10.5293 0 -16.0505 0 0 8331]39.67%| 76.74550
Run Mean | 21.2686] — -3.6285] 1 1 o[ 0.00%| 89.16752
MSEAT 7.8447 1 -7.0812 1 0 12901]61.44%|} 85.71484

15 |MSEAET 7.8645 1 -7.9941 1 0 11339]53.99%| 84.80188
MSEASVT 7.8444 1 -7.0819 1 0 11880} 56.57%] 85.71413
MSESET 26.9649 0 --4.5243 1 1 9074|43.21%| 88.27171
Run Mean | 26.3079] — 7.3637] 1 0 0] 0.00%|100.15969
MSEAT 5.1132 1 -1.6188 1 1 9745146.40%| 91.17723

16 |MSEAET 5.3327 1 -1.8052 1 1 10941}52.10%] 90.99082
MSEASVT 5.1116 1 -1.6322 1 1 8770]41.76%] 91.16379
MSESET 51.5978 0 35.9489 0 0 8203]39.06%|128.74486
Run Mean 16.7730 — 4.9164 1 0 0| 0.00%| 97.71242
MSEAT 0.5638] 1 0.1172] 1 1 12871 61.29%)| 92.67878

17 |MSEAET 1.7421 1 -0.0155 1 1 12508] 59.56%] 92.78054
MSEASVT 0.5639 1 -0.1248 1 1 127251 60.60%| 92.67125
MSESET 25.8116 0 10.4263 0 0 6477}30.84%103.22230
Run Mean 23.4182 — -11.2791 0 0 0] 0.00%| 81.51693
MSEAT 10.1653 1 -7.3945 1 0 12391]59.00%| 85.40152

18 |MSEAET 10.0885 1 -7.9454 1 0 12830 61.10%] 84.85059
MSEASVT 10.1596 1 -7.4134 1 0 11373]54.15%] 85.38259
MSESET 32.7284 0 2.8446 1 1 8330]39.66%| 95.64056
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Model: E/E/4 Replication Deletion w/ Initial Q Length (Large Expected QL)

Est. Less +5%0 | +2% 0 Avg %

Exp#| Method {1/2 Width] Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 22.7128 — 8.5976 1 0 0{ 0.00%(101.39363
MSEAT 4.3774 1 -2.5621 1 1 13007]61.94%]| 90.23386

19 {MSEAET 4.7316 1 -2.6780 1 1 12031]57.29%| 90.11796
MSEASVT 4.3731 1 -2.5946 1 1 12950} 61.67%| 90.20136
MSESET 34,7549 0 16.4683 0 0 7608|36.23%]109.26432
Run Mean 20.6435 — -8.2843 1 0 0| 0.00%| 84.51167
MSEAT 8.9824 1 -9.1772 1 0 13418]63.89%| 83.61881

20 |MSEAET 8.7126 1 -9.9859 0 0 12239]58.28%] 82.81008
MSEASVT 8.9615 1 -9.2324 1 0 12019]57.23%| 83.56355
MSESET 38.5857 0 -9.5048 0 0 8457|40.27%| 83.29119
Run Mean 16.8303 — -7.6721 1 0 0| 0.00%{ 85.12390
MSEAT 6.0708 1 -5.8314 1 0 10491149.96%| 86.96460

21 |MSEAET 6.0037 1 -6.2806 1 0 10340§49.24%| 86.51541
MSEASVT 6.0693 1 -5.8350 1 0 10351149.29%| 86.96099
MSESET 11.5258 1 -20.8346 0 0 7756]36.93%] 71.96142
Run Mean 32.1562 — 7.1478 1 0 0| 0.00%| 99.94377
MSEAT 5.0362 1 -1.9777 1 1 14362} 68.39%| 90.81832

22 |MSEAET 5.2544 1 -2.8818 1 1 13958| 66.47%} 89.91423
MSEASVT 5.0313 1 -2.0242 1 1 14360 68.38%] 90.77184
MSESET 53.6521 0 12.4131 0 0 8314]39.59%|105.20914
Run Mean 27.6855 — 4.7366 1 0 0] 0.00%} 97.53264
MSEAT 7.1606 1 -7.7499 1 0 129301 61.57%)] 85.04606

23 |[MSEAET 7.2339 1 -7.8161 1 0 13177]62.75%| 84.97990
MSEASVT 7.1613 1 -7.7499 1 0 12830 61.10%| 85.04610
MSESET 46.6272 0 21.7023 0 0 8384|39.92%|114.49832
Run Mean 16.7995 — -7.4308 1 0 0| 0.00%| 85.36515
MSEAT 8.2099 1 -0.9649 1 1 8577{40.84%| 91.83111

24 |MSEAET 8.2861 1 -1.6720 1 1 8925142.50%| 91.12404
MSEASVT 8.2096 1 -0.9714 1 1 9048] 43.08%| 91.82455
MSESET 22.1770] 0 |-12.3668] 0 0 8829| 42.04%| 80.42918
Run Mean 31.2071 — 32.1117 0 0 0| 0.00%|124.90774
MSEAT 5.1823 1 1.1536 1 1 14387{68.51%| 93.94958

25 |MSEAET 5.3588 1 1.2229] 1 1 11775/ 56.07%| 94.01885
MSEASVT 5.1823 1 1.1541 1 1 13730§65.38%| 93.95006
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Micro Analysis of Results
Model: E/E/4 Replication Deletion w/ Empty & Idle (Large Expected QL)

Est. Less +5%0 | +2% 0 Avg %

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.| Trunc |[Estimate
Run Mean 14.2455 —_ -16.2175 0 0 0| 0.00%| 76.5785
MSEAT 4.7847 1 -3.7765 1 1 14143|67.35%| 89.0195

1 |MSEAET 4.7240 1 -4.1524 1 1 135791 64.66%| 88.6436
MSEASVT 4.8040 1 -3.7199 1 1 12517]59.61%| 89.0761
MSESET 22.0084 0 -14.7008 0 0 7389|35.19%| 78.0952
Run Mean 12.9153 —_ -29.9097 0 0 0] 0.00%| 62.8863
MSEAT 8.2623 1 -11.5430 0 0 17460183.14%| 81.2530

2 |MSEAET 8.2314 1 -11.7213 0 0 16691|79.48%| 81.0747
MSEASVT 8.2565 1 -11.5528 0 0 17460| 83.14%| 81.2432
MSESET 24.2238 0 -25.4769 0 0 8266(39.36%| 67.3191
Run Mean 11.3392 — -21.7849 0 0 0f 0.00%) 71.0111
MSEAT 7.0771 1 -7.8551 1 0 11523)54.87%| 84.9409

3 |MSEAET 6.9345 1 -8.4769 1 0 10678|50.85%| 84.3191
MSEASVT 7.0737 1 -7.8625 1 0 10874151.78%| 84.9335
MSESET 9.3859 1 -32.5682 0 0 9468145.09%| 60.2278
Run Mean 7.4771 — -25.1476 0 0 0| 0.00%] 67.6484
MSEAT 9.3036 0 -11.4861 0 0 12579)59.90%| 81.3099

4 |MSEAET 9.0451 0 -12.3049 0 0 12175|57.98%| 80.4911
MSEASVT 9.2967 0 -11.4995 0 0 11240{53.52%| 81.2965
MSESET 18.3246 0 -26.1649 0 0 6218]29.61%] 66.6311
Run Mean 14.5080 — -13.9343 0 0 0] 0.00%| 78.8617
MSEAT 2.2689 1 -1.4794 1 1 12701 60.48%| 91.3166

5 |MSEAET 2.5229 1 -2.6637 1 1 11821(56.29%| 90.1323
MSEASVT 2.2654 1 -1.4933 1 1 12533|59.68%| 91.3027
MSESET 17.0950 0 -20.9896 0 0 7551135.96%] 71.8064
Run Mean 17.8837 — -9.1564 1 0 0] 0.00%| 83.6396
MSEAT 6.8562 1 2.0140 1 1 13450]64.05%| 94.8100

6 |MSEAET 7.1233 1 1.4584 1 1 12996]61.89%| 94.2544
MSEASVT 6.8578 1 2.0014 1 1 12625]60.12%| 94.7974
MSESET 32.0449 0 8.4911 1 0 8378]39.89%| 101.2871
Run Mean 20.7924 — -11.5000 0 0 0] 0.00%| 81.2960
MSEAT 9.6511 1 -8.5359 1 0 9449(45.00%f 84.2601

7 |MSEAET 9.8493 1 -8.2508 1 0 9979{47.52%| 84.5452
MSEASVT 9.4864 1 -8.3311 1 0 11503|54.78%| 84.4649
MSESET 39.9157 0 -3.7913 1 1 8598}40.94%| 89.0047
Run Mean 26.1807 — 7.1613 1 0 0] 0.00%| 99.9573
MSEAT 0.0078 1 -0.1256 1 1 16204 77.16%| 92.6704

8 |MSEAET 0.7783 1 -0.6852 1 1 16219|77.23%| 92.1108
MSEASVT 0.1941 1 -0.0210 1 1 12525{59.64%| 92.7750
MSESET 25.2913 1 18.8437 0 0 8690|41.38%| 111.6397
Run Mean 22.0318 — -12.6623 0 0 0] 0.00%| 80.1337
MSEAT 6.6283 1 -4.9466 | 0 15383|73.25%| 87.8494

9 MSEAET 6.5797 1 -5.1323 1 0 143711 68.44%] 87.6637
MSEASVT 6.6230 1 -4.9638 1 0 14469]|68.90%| 87.8322
MSESET 22.5280 0 -10.2739 0 0 8720|41.53%| 82.5221
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Est. Less +5%0 | +t2% 0 Avg %

Exp#| Method |1/2 Width} Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 14.5300 — -17.9665 0 0 0] 0.00%| 74.8295
MSEAT 7.7437 1 -1.7904 1 1 15177]72.27%} 91.0056

10 |MSEAET 7.7345 1 -1.9464 1 1 14340]68.28%| 90.8496
MSEASVT 7.7339 1 -1.9682 1 1 11445(54.50%| 90.8278
MSESET 23.1093 0 -10.0503 0 .0 9578|45.61%| 82.7457
Run Mean 25.0200 — 5.7627 1 0 0] 0.00%| 98.5587
MSEAT 9.5252 1 4.0272 1 1 11870156.52%| 96.8232

11 |MSEAET 9.9384 1 2.7180 1 1 12688} 60.42%| 95.5140
MSEASVT 9.5263 1 4.0211 1 1 11866]56.51%] 96.8171
MSESET 33.7161 0 16.8018 0 0 7507135.75%| 109.5978
Run Mean 26.1262 —_ -2.4087 1 1 0| 0.00%| 90.3873
MSEAT 3.9909 1 -4.6911 1 0 11920§56.76%| 88.1049

12 |MSEAET 4.1162 1 -5.2140 1 0 11774|56.07%) 87.5820
MSEASVT 3.9908 1 -4.6913 1 0 11171}53.19%| 88.1047
MSESET 27.7895 0 0.2480 1 1 9091]43.29%| 93.0440
Run Mean 14.7794 — -15.0389 0 0 0| 0.00%f 77.7571
MSEAT 2.5565 1 -0.7964 1 1 15224]72.49%| 91.9996

13 |MSEAET 3.0496 1 -0.9695 1 1 14708]|70.04%] 91.8265
MSEASVT 2.5496 1 -0.9110 1 1 14871}170.81%| 91.8850
MSESET 27.5567 0 -5.6343 1 0 8393|39.97%| 87.1617
Run Mean 9.2595 — -21.0262 0 0 0] 0.00%| 71.7698
MSEAT 5.6124 1 -2.9872 1 1 12490]59.47%| 89.8088

14 [MSEAET 5.5369 1 -3.5579 1 1 11401]|54.29%| 89.2381

" MSEASVT 5.6057 1 -3.0184 1 1 12489|59.47%| 89.7776
MSESET 10.9760 0 -13.5521 0 0 9062143.15%| 79.2439
Run Mean 20.5139 — -5.8659 1 0 0| 0.00%| 86.9301
MSEAT 8.1553 1 -7.4548 1 0 12615]60.07%| 85.3412

15 |MSEAET 8.1012 1 -8.2743 1 0 11579155.14%| 84.5217
MSEASVT 8.1536] 1 7.4591] 1 0 11922/ 56.77%| 85.3369
MSESET 27.3870 0 -4.3560 | 1 9378|44.66%| 88.4400
Run Mean 23.3923 — 4,2525 1 1 0] 0.00%| 97.0485
MSEAT 5.0982 1 -1.3316 1 1 11353]|54.06%] 91.4644

16 {MSEAET 5.2467 1 -1.5696 1 1 11508} 54.80%} 91.2264
MSEASVT 5.0979 1 -1.3349 1 1 8555140.74%] 91.4611
MSESET 50.2919 0 35.8103 0 0 8177138.94%| 128.6063
Run Mean 16.7575 — -0.9300 1 1 0] 0.00%| 91.8660
MSEAT 3.6797 1 -1.9958 1 1 12766{60.79%| 90.8002

17 |MSEAET 3.7989 1 -1.6841 1 1 12739 60.66%| 91.1119
MSEASVT 3.7198 1 -1.8595 1 1 12658] 60.28%) 90.9365
MSESET 23.9246 0 9.8371 0 0 6773|32.25%| 102.6331
Run Mean 22.9417 — -11.9697 0 0 0| 0.00%| 80.8263
MSEAT 9.8392 1 -7.4232 1 0 12055|57.40%| 85.3728

18 |MSEAET 9.7955 1 -7.8278 1 0 12417159.13%] 84.9682
MSEASVT 9.8008 1 -7.4083 1 0 10777|51.32%| 85.3877
MSESET 32.6527 0 3.6586 1 1 9104} 43.35%] 96.4546
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Model: E/E/4 Replication Deletion w/Empty & Idle (Large Expected QL)

Est. Less +5%06 | 2% 06 Avg %

Exp#| Method |1/2 Width] Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 22.1293 — 4.7941 1 0 0] 0.00%| 97.5901
MSEAT 5.9075 1 -0.0022 1 1 14302]68.10%] 92.7938

19 |MSEAET 6.1027 1 -0.7107 1 1 13540| 64.47%| 92.0853
MSEASVT 5.9078 1 0.0401 1 1 14301]68.10%| 92.8361
MSESET 35.6543 0 18.5180 0 0 7636|36.36%| 111.3140
Run Mean 19.7883 — -10.9865 0 0 0] 0.00%| 81.8095
MSEAT 9.3213 1 -9.8104 0 0 13481| 64.20%} 82.9856

20 [MSEAET 9.1934 1 -10.2780 0 0 11749155.95%| 82.5180
MSEASVT 9.3236 1 -9.8053 0 0 11871]56.53%] 82.9907
MSESET 38.1740 0 -10.5651 0 0 8652|41.20%| 82.2309
Run Mean 16.3289 — -8.8504 1 0 0] 0.00%| 83.9456
MSEAT 5.0246 1 -4.7160 1 0 14704]70.02%| 88.0800

21 |MSEAET 5.0303 1 -5.1205 1 0 13269]63.19%| 87.6755
MSEASVT 5.0209 1 -4.7256 | 0 12845[61.17%] 88.0704
MSESET 11.7685 1 -19.9066 0 0 9145143.55%] 72.8894
Run Mean 32.3855 — 4.8887 1 0 0} 0.00%| 97.6847
MSEAT 6.1324 1 -5.3359 1 0 128811 61.34%| 87.4601

22 |MSEAET 6.2714 1 -5.7648 1 0 12871}61.29%| 87.0312
MSEASVT 6.1343 1 -5.3306 1 0 12881]61.34%| 87.4654
MSESET 53.4926 0 13.5338 0 0 8320]39.62%| 106.3298
Run Mean 26.8490} — 3.7195 1 1 0| 0.00%| 96.5155
MSEAT 7.3578 1 -8.5278 1 0 13006]61.94%| 84.2682

23 |MSEAET 7.4556 1 -8.3355 1 0 13358{63.61%| 84.4605
MSEASVT 7.3562 1 -8.5312 1 0 12890{61.38%) 84.2648
MSESET 44.8060 0 20.6915 0 0 8466|40.32%| 113.4875
Run Mean 15.5075 — -11.2410 0 0 0{ 0.00%| 81.5550
MSEAT 7.4377 1 -0.6782 1 1 9406]44.79%] 92.1178

24 |MSEAET 7.5268 1 -1.3338 1 1 8986]42.79%| 91.4622
MSEASVT 7.4376 1 -0.6801 1 1 8344139.74%| 92.1159
MSESET 22.3444 0 -12.5685 0 0 8210[39.10%| 80.2275
Run Mean 29.3513 — 24.0536 0 0 0] 0.00%| 116.8496
MSEAT 5.9305 1 0.6171 1 1 149191 71.04%] 93.4131

25 [MSEAET 6.1991 1 0.8611 1 1 130071 61.94%| 93.6571
MSEASVT 5.9309 1 0.6098 1 1 14756]70.27%| 93.4058
MSESET 32.3733 0 30.8444) O 0 5728|27.27%) 123.6404




Micro Analysis of Results

Model: E,/E, /4 Batch Means w/ Initial Q Length
Est. Less +5%0 | +2% 0 %

Exp#| Method [1/2 Width| Y/N Bias Trunc Pt.] Trunc |Estimate
Run Mean 0.9139 — -0.2979 1 0 0| 0.00%| 13.14209
MSEAT 3.8195 0 -0.0328 1 1 202343{96.35%| 13.40715

1 |MSEAET 2.0692 0 -0.0486 1 1 170148|81.02%| 13.39136
MSEASVT 0.8436 1 -0.1151 1 1 11105] 5.29%| 13.32494
MSESET 0.7850 i -0.8278 0 0 120834} 57.54%| 12.61223
Run Mean 0.8841 — -0.2337 1 1 0| 0.00%| 13.20626
MSEAT 1.3269 0 -0.0571 1 1 74987)35.71%| 13.38285

2 |MSEAET 0.8867 0 -0.0572 1 1 131923|62.82%| 13.38283
MSEASVT 1.2752 0 -0.0573 1 1 74391|35.42%| 13.38268
MSESET 0.9719 0 0.3185 1 0 92984 44.28%| 13.75853
Run Mean 0.7900 — -0.2978 1 0 0] 0.00%) 13.14223
MSEAT 2.7412 0 -0.0572 1 | 175288 83.47%| 13.38279

3 IMSEAET 2.4067 0 -0.0611 1 1 182729]87.01%| 13.37886
MSEASVT 1.1190 0 -0.0623 1 1 60869} 28.99%| 13.37765
MSESET 0.7034 1 -0.4950 1 0 537381 25.59%| 12.94498
Run Mean 1.0734 — 0.8799 0 0 0| 0.00%| 14.31989
MSEAT 2.1898 0 -0.0570 1 1 166336|79.21%| 13.38296

4 IMSEAET 1.3095 0 -0.0573 1 1 158676} 75.56%| 13.38266
MSEASVT 1.2418 0 -0.0472 | 1 123137| 58.64%| 13.39281
MSESET 1.1548 0 0.6882 0 0 105817} 50.39%| 14.12816
Run Mean 1.1053 — -0.3667 1 0 0| 0.00%§ 13.07331
MSEAT 2.5412 0 -0.0578 1 1 1434431 68.31%| 13.38217

5 MSEAET 2.1872 0 0.1910 1 1 130694 62.24%| 13.63103
MSEASVT 2.5357 0 -0.0628 1 1 139688| 66.52%| 13.37717
MSESET 0.9489 1 -0.6348 1 0 29175} 13.89%| 12.80515
Run Mean 0.9751 — 0.5862 1 0 0| 0.00%| 14.02621
MSEAT 1.0408 0 -0.0573 1 1 53924}25.68%| 13.38269

6 |MSEAET 1.0584 0 -0.0712 1 1 90744|43.21%| 13.36879
MSEASVT 0.9121 1 -0.0573 1 1 52636]25.06%| 13.38267
MSESET 0.9718 1 0.1390 1 1 40777 19.42%| 13.57898
Run Mean 1.1204 — 0.0402 1 1 0| 0.00%| 13.48018
MSEAT 1.0520 1 -0.0571 1 1 74595|35.52%| 13.38285

7 |MSEAET 1.2509 0 -0.0818 1 1 147647|70.31%| 13.35824
MSEASVT 0.9201 1 -0.0573 1 1 67712]32.24%| 13.38272
MSESET 0.8304 1 0.0402 1 1 23779]11.32%| 13.48019
Run Mean 1.1891 — 0.2312 1 1 0| 0.00%| 13.67115
MSEAT 1.7998 0 -0.0568 1 1 112491§53.57%| 13.38323

8 |MSEAET 1.1436 1 -0.0569 1 1 118628|56.49%| 13.38313
MSEASVT 1.6237 0 -0.0573 1 1 109890] 52.33%)| 13.38266
MSESET 0.9619 1 0.0191 1 1 79724|37.96%| 13.45915
Run Mean 0.8816 — -0.6317 1 0 0{ 0.00%| 12.80827
MSEAT 3.6914 0 -0.0633 1 1 202043]96.21%| 13.37673

9 |MSEAET 1.7833 0 -0.0603 1 1 161807} 77.05%| 13.37974
MSEASVT 1.1158 0 -0.2187 1 1 120156|57.22%] 13.22126
MSESET 0.6111 1 -0.5429 1 0 11429| 5.44%| 12.89710
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Micro Analysis of Results

Model: E,/E, /4 Batch Means w/ Initial Q Length
Est. Less +5%0 | +2% 0 %0

Exp#| Method |1/2 Width] Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.7079 — -0.2023 1 1 0} 0.00%| 13.23774
MSEAT 1.7281 0 -0.0579 1 1 164001]78.10%} 13.38211

10 |MSEAET 1.6200 0 -0.0575 1 1 185993 88.57%) 13.38248
MSEASVT 0.9101 0 -0.0752 1 1 24033|11.44%| 13.36481
MSESET 0.5943 1 0.3369 1 0 106169 50.56%] 13.77687

Run Mean 0.9947 — 0.3019 1 0 0| 0.00%| 13.74194
MSEAT 1.1662 0 -0.0572 1 1 94382{44.94%| 13.38276

11 |MSEAET 1.4610 0 0.0602 1 1 156831]74.68%| 13.50019
MSEASVT 0.9968 0 -0.0572 1 1 33605]16.00%} 13.38276
MSESET 0.7684 1 -0.1020 1 1 41127}19.58%| 13.33803

Run Mean 0.8670 — -0.4612 1 0 0] 0.00%) 12.97880
MSEAT 3.6777 0 -0.0794 1 1 203123]96.73%] 13.36061

12 |MSEAET 1.7855 0 -0.0709 1 1 149499]71.19%| 13.36914
MSEASVT 2.6353 0 -0.0638 1 1 196159]93.41%| 13.37617
MSESET 0.6609 1 -0.9251 0 0 41552]119.79%| 12.51494

Run Mean 0.8498 — 0.3641 1 0 0| 0.00%| 13.80407
MSEAT 1.3186 0 -0.0581 1 1 135825{64.68%| 13.38192

13 |MSEAET 0.7668 1 -0.0580 1 1 129851]61.83%| 13.38205
MSEASVT 1.1548 0 -0.0580 1 1 1255961 59.81%} 13.38203
MSESET 0.6589 1 0.4007 1 0 17569f 8.37%| 13.84067

Run Mean 1.0424 — 0.9249 0 0 0] 0.00%| 14.36489
MSEAT 1.6086 0 -0.0571 1 1 138619} 66.01%| 13.38293

14 |MSEAET 1.7217 0 -0.0593 1 1 173841]82.78%| 13.38073
MSEASVT 1.1689 0 -0.0263 1 1 109948] 52.36%] 13.41367
MSESET 0.8507 1 0.2255 1 1 95470]45.46%| 13.66547

Run Mean 0.7844 —_ -0.0063] 1 1 0] 0.00%| 13.43372
MSEAT 2.4820 0 -0.0511 1 1 6770] 3.22%| 13.38893

15 |MSEAET 1.9487 0 0.6603 1 0 105601] 50.29%} 14.10032
MSEASVT 0.7639 1 -0.0572 1 1 6234 2.97% 13.38284
MSESET 0.9328 0 0.5508 1 0 62768]29.89%| 13.99076

Run Mean 1.0681 — 0.0639 1 1 0f 0.00%| 13.50387
MSEAT 2.8207 0 -0.0601 1 1 189683]90.33%| 13.37988

16 |MSEAET 2.0489 0 -0.0616 1 1 191476]91.18%] 13.37842
MSEASVT 1.0338 1 -0.0575 1 1 5679f 2.70%)] 13.38253
MSESET 0.7985 1 -0.2480 1 1 14731] 7.01%{ 13.19203

Run Mean 0.9866 — 0.5412 1 0 0] 0.00%| 13.98124
MSEAT 3.5217 0 -0.0103 1 1 198166]94.36%| 13.42970

17 |MSEAET 2.0869 0 0.1938 1 1 153876} 73.27%| 13.63384
MSEASVT 3.2581 0 -0.0225 1 1 197114]93.86%| 13.41747
MSESET 1.2531 0 0.9906 0 0 114229]54.39%| 14.43061

Run Mean 1.1426 — -0.2834 1 0 0] 0.00%| 13.15660
MSEAT 1.7199 0 -0.0582 1 1 156639{74.59%| 13.38177

18 |MSEAET 0.8394 1 -0.0821 1 1 136906] 65.19%| 13.35791
MSEASVT 1.4516 0 -0.0578 1 1 22020} 10.49%| 13.38221
MSESET 0.9971 1 -1.0461 0 0 96648} 46.02%] 12.39389
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Micro Analysis of Results
Model: E,/E, /4 Batch Means w/ Initial Q Length

Est. Less +5%0 | t2% 6 %

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.] Trunc |Estimate
Run Mean 1.1870 — 0.9963 0 0 0] 0.00%] 14.43628
MSEAT 1.8286 0 -0.0573 1 1 1484691 70.70%| 13.38273

19 [MSEAET 1.1066 1 -0.0578 1 1 135130} 64.35%| 13.38216
MSEASVT 1.8285 0 -0.0570 1 1 148468 70.70%| 13.38297
MSESET 0.9368 1 0.9480 0 0 12637] 6.02%| 14.38803
Run Mean 0.9467 —_ 0.4559 1 0 0] 0.00%| 13.89590]
MSEAT 1.9763 0 -0.0572 1 1 149313171.10%| 13.38282

20 |MSEAET 0.8414 1 -0.0556 1 1 142228| 67.73%| 13.38441
MSEASVT 1.7972 0 -0.0571 1 1 123737} 58.92%| 13.38290
MSESET 0.8598 i 0.6847 0 0 59314|28.24%| 14.12466
Run Mean 1.0275 —_ -0.7257 0 0 0| 0.00%| 12.71427
MSEAT 1.9322 0 -0.0584 1 1 172597182.19%| 13.38161

21 |MSEAET 1.0167 1 -0.0583 1 1 117111155.77%] 13.38167
MSEASVT 1.9220 0 -0.0580 1 1 156482} 74.52%| 13.38202
MSESET 0.8653 1 -0.3811 1 0 77310]|36.81%| 13.05890
Run Mean 1.1046 — 0.5037 1 0 0|l 0.00%| 13.94368
MSEAT 1.7130 0 -0.0543 1 1 175312]83.48%] 13.38570§

22 {MSEAET 1.4093 0 0.4475 1 0 157208 74.86%| 13.88746
MSEASVT 1.7986 0 -0.0571 1 1 160567|76.46%| 13.38287
MSESET 1.3188 0 1.2107 0 0 104522]49.77%} 14.65067
Run Mean 0.9750 — -0.1257 1 1 0} 0.00%| 13.31432
MSEAT 0.9845 0 -0.0572 1 1 8103] 3.86%| 13.38278

23 |MSEAET 1.2756 0 -0.0520 1 1 131974] 62.84%| 13.38798
MSEASVT 0.9310 1 -0.0574 1 1 4651 2.21%] 13.38261
MSESET 0.6308 1 -0.1518 1 1 45104]|21.48%| 13.28819
Run Mean 0.7874 — -0.2801 1 0 0] 0.00%] 13.15985
MSEAT 1.0178 0 -0.0575 1 1 49738]23.68%] 13.38249

24 |MSEAET 1.5851 0 -0.0585 1 1 148018} 70.48%| 13.38147
MSEASVT 0.9023 0 -0.0634 1 1 25662} 12.22%| 13.37660
MSESET 0.7976 0 0.4094 1 0 103124|49.11%| 13.84938
Run Mean 1.1146 — 0.6965 0 0 0| 0.00%| 14.13650
MSEAT 6.4545 0 -0.0523 1 1 133205 63.43%| 13.38767

25 IMSEAET 2.0447 0 -0.1032 1 1 115494]55.00%) 13.33685
MSEASVT 1.0476 1 0.6713 1 0 120812{57.53%] 14.11133
MSESET 0.7997 1 1.2181 0 0 15739} 7.49%] 14.65806




Micro Analysis of Results

Model: E,/E, /4 Batch Means w/Empty & Idle
Est. Less +5%0 0 +2% 6 %

Exp#| Method |1/2 Width] Y/N Bias Trunc Pt.| Trunc [Estimate
Run Mean 0.9202) — -0.2983 1 0 0] 0.00%| 13.14168
MSEAT 3.7956 0 -0.0561 1 1 202353/ 96.36%| 13.38393

1 |MSEAET 2.0156 0 -0.0511 1 1 170396{81.14%| 13.38891
MSEASVT 0.8436 1 -0.1153 1 1 11105] 5.29%| 13.32468
MSESET 0.7838 1 -0.8272 0 0 120833|57.54%| 12.61277
Run Mean 0.9318 — -0.0041 1 1 0] 0.00%|} 13.43585
MSEAT 0.8455 1 -0.0574 1 1 20999| 10.00%| 13.38264

2 |MSEAET 1.0907 0 -0.0560 1 1 116831]55.63%| 13.38399
MSEASVT 0.8511 1 -0.0574 1 1 20220] 9.63%| 13.38264
MSESET 0.5874 1 0.1582 1 1 44345121.12%| 13.59819
Run Mean 0.7857 — -0.5719 1 0 0] 0.00%} 12.86810
MSEAT 3.5826 0 -0.0574 1 1 180394| 85.90%] 13.38262

3 [MSEAET 1.7999 0 -0.1253 1 1 149644|71.26%| 13.31470}
MSEASVT 2.6013 0 -0.0765 1 1 164127]78.16%| 13.36351
MSESET 1.1176 0 -1.0198 0 0 975421 46.45%| 12.42021
Run Mean 1.0581 — 0.9685 0 0 0] 0.00%| 14.40845
MSEAT 2.6628 0 -0.0577 1 1 163923 78.06%| 13.38232

4 |MSEAET 1.5493 0 -0.0497 1 1 180975|86.18%] 13.39029
MSEASVT 2.5780 0 -0.0571 1 1 162233]|77.25%| 13.38285
MSESET 1.2225 0 0.8611 0 0 68320} 32.53%| 14.30107
Run Mean 0.9510} — -0.5212 1 0 0] 0.00%| 12.91879
MSEAT 4.1461 0 -0.0597 1 1 190461|90.70%| 13.38029

5 |MSEAET 2.4156 0 -0.0580 1 1 159244|75.83%| 13.38196
MSEASVT 2.1944 0 -0.1675 1 1 147642]70.31%} 13.27253
MSESET 0.6656 1 -0.9850 0 0 72938|34.73%| 12.45498
Run Mean 0.9751 —_ 0.5862 1 0 0] 0.00%{ 14.02621
MSEAT 1.0408 0 -0.0573 1 1 53924|25.68%| 13.38269

6 |MSEAET 1.0584 0 -0.0712 1 1 90744143.21%| 13.36879
MSEASVT 0.9121 1 -0.0573 1 1 52636|25.06%| 13.38267
MSESET 0.9718 1 0.1390 1 1 40777]19.42%| 13.57898
Run Mean 1.0744 — 0.1984 1 1 0] 0.00%| 13.63844
MSEAT 4.8389 0 -0.3562 1 0 209096]99.57%| 13.08375

7 |MSEAET 1.8496 0 -0.1570 1 1 144269 68.70%| 13.28303}
MSEASVT 1.3620 0 -0.0576] .1 1 111277|52.99%| 13.38236
MSESET 0.7943 1 0.3309 1 0 6675 3.18%| 13.77091
Run Mean 1.2224 — 0.7701 0 0 0] 0.00%| 14.21006
MSEAT 3.0290 0 -0.0570 1 1 201344]95.88%| 13.38301

‘8 |MSEAET 1.9120 0 -0.0548 1 1 144771]68.94%| 13.38517
MSEASVT 1.5535 0 -0.0572 1 1 110199]52.48%| 13.38281
MSESET 1.2351 0 0.1328 1 1 106234]50.59%)] 13.57284
Run Mean 0.8816] — -0.6317 1 0 0| 0.00%| 12.80827
MSEAT 3.6914 0 -0.0633 1 1 202043]96.21%| 13.37673

9 |MSEAET 1.7833 0 -0.0603 1 1 161807|77.05%| 13.37974
MSEASVT 1.1158 0 -0.2187 1 | 120156[57.22%| 13.22126
MSESET 0.6111 1 -0.5429 1 0 11429| 5.44%| 12.89710
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Micro Analysis of Results

Model: E,/E, / 4 Batch Means w/ Empty & Idle
Est. Less +5%0 | +2% 0 %

Exp#| Method |1/2 Width] Y/N Bias Trunc Pt.] Trunc |[Estimate
Run Mean 0.8223 — -0.2150 1 1 0] 0.00%| 13.22502
MSEAT 1.7571 0 -0.0579 1 1 132741} 63.21%| 13.38208

10 |MSEAET 1.4483 0 -0.0693 1 1 165722|78.92%| 13.37066
MSEASVT 0.8757 0 -0.0573 1 1 20386] 9.71%| 13.38265
MSESET 0.8673 0 0.3135 1 0 95277|45.37%| 13.75353
Run Mean 1.0633 — 0.8278 0 0 0 0.00%| 14.26784
MSEAT 2.2663 0 -0.0498 1 1 203534}96.92%| 13.39016

11 |MSEAET 1.2566 0 -0.0547 1 1 132034}62.87%| 13.38534
MSEASVT 1.9517 0 -0.0579 1 1 174795] 83.24%} 13.38208
MSESET 0.6904 1 0.9740 0 0 55464|26.41%| 14.41402
Run Mean 0.8670 — -0.4612 1 0 0] 0.00%| 12.97880
MSEAT 3.6777 0 -0.0794 1 1 203123]96.73%| 13.36061

12 |MSEAET 1.7855 0 -0.0709 1 1 149499 71.19%} 13.36914
MSEASVT 2.6353 0 -0.0638 1 1 196159193.41%] 13.37617
MSESET 0.6609 1 -0.9251 0 0 41552{19.79%| 12.51494
Run Mean 0.8539 — 0.3633 1 0 0| 0.00%| 13.80330
MSEAT 1.1485 0 -0.0577 1 1 136933} 65.21%| 13.38226

13 |MSEAET 0.7740 1 -0.0585 1 1 130614} 62.20%| 13.38150
MSEASVT 1.1550 0 -0.0587 1 1 125596 59.81%{ 13.38129
MSESET 0.6585 1 0.4002! 1 0 17569| 8.37%| 13.84018
Run Mean 0.9541 — 0.5062 1 0 0{ 0.00%| 13.94623
MSEAT 2.7396 0 -0.0575 1 1 180759] 86.08%| 13.38250

14 |MSEAET 1.3673 0 -0.0573 1 1 135006) 64.29%| 13.38265
MSEASVT 1.2294 0 -0.0570 1 1 85102]40.52%] 13.38299
MSESET 0.9471 1 0.0585 1 1 69470| 33.08%| 13.49845
Run Mean 0.7844 — -0.0063 1 1 0| 0.00%| 13.43372
MSEAT 2.4820) 0 -0.0511 1 1 175843|83.73%| 13.38893

15 [MSEAET 1.9487 0 0.6603 1 0 164531]78.35%| 14.10032
MSEASVT 0.7639 1 -0.0572 1 1 3295] 1.57%| 13.38284
MSESET 0.9328 0 0.5508 1 0 97897|46.62%} 13.99076
Run Mean 1.0682 — 0.0638 1 1 0] 0.00%] 13.50382
MSEAT 2.7973 0 -0.0605 1 1 189567]90.27%] 13.37948

16 JMSEAET 2.0014 0 -0.0619 1 1 191438{91.16%| 13.37815
MSEASVT 1.0338 1 -0.0575 1 1 5679 2.70%| 13.38248
MSESET 0.7985 1 -0.2480 1 1 14731} 7.01%| 13.19197
Run Mean 1.0582 — 0.9048 0 0 0] 0.00%] 14.34478
MSEAT 4.2827 0 -0.0581 1 1 199842]95.16%| 13.38194

17 |MSEAET 2.3569 0 -0.0572 1 1 163681|77.94%| 13.38277
MSEASVT 2.7588 0 -0.0536 1 1 189987/ 90.47%| 13.38637
MSESET 1.0665 0 1.2532 0 0 49010]23.34%| 14.69322
Run Mean 0.9764 — -0.1438 1 1 0 0.00%} 13.29616
MSEAT 1.0005 0 -0.0573 1 1 12024| 5.73%| 13.38268

18 |MSEAET 2.0603 0 -0.0650 1 1 106091}50.52%]| 13.37496
MSEASVT 0.9789 0 -0.0574 1 1 10935] 5.21%| 13.38262
MSESET 0.9263 1 -0.8469 0 0 97115|46.25%| 12.59310
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Micro Analysis of Results

Model: E,/E, /4 Batch Means w/Empty & Idle
Est. Less +5%0 | +2% 0 %

Exp#| Method {1/2 Width] Y/N Bias Trunc Pt.! Trunc [Estimate
Run Mean 1.1841 — 0.9960 0 0 0] 0.00%| 14.43599
MSEAT 1.7231 0 -0.0585 1 1 149303} 71.10%} 13.38152

19 |MSEAET 1.0511 1 -0.0583 1 1 125773]59.89%|) 13.38174
MSEASVT 1.8276 0 -0.0568 1 1 148474)70.70%) 13.38317
MSESET 0.9365 1 0.9485 0 0 12637 6.02%| 14.38846
Run Mean 0.9467 — 0.4559 1 0 0] 0.00%| 13.89592
MSEAT 2.0492 0 -0.0572 1 1 130654|62.22%] 13.38280

20 |MSEAET 1.0705 0 -0.0557 1 1 138050] 65.74%] 13.38434
MSEASVT 1.7972 0 -0.0571 1 1 123737158.92%| 13.38286
MSESET 0.8591 1 0.6846 0 0 59310} 28.24%| 14.12457
Run Mean 1.0232 — -0.7268 0 0 0] 0.00%) 12.71323
MSEAT 1.9310 0 -0.0577 1 1 172598 82.19%] 13.38225

21 JMSEAET 0.9936 1 -0.0575 1 1 126381] 60.18%] 13.38247
MSEASVT 1.9223 0 -0.0575 1 1 156483]74.52%| 13.38251
MSESET 0.8646 1 -0.3810 1 0 77315]36.82%| 13.05904
Run Mean 1.0399 — 0.2320 1 1 0] 0.00%| 13.67199
MSEAT 1.2966 0 -0.0571 1 1 127350} 60.64%| 13.38295

22 |MSEAET 1.3034 0 -0.0570 1 1 170933{81.40%| 13.38304
MSEASVT 1.1553 0 -0.0566 1 1 42537]20.26%| 13.38343
MSESET 0.6917 1 0.1160 1 1 20886] 9.95%| 13.55602
Run Mean 1.0911 — 0.5573 1 0 0f 0.00%| 13.99732
MSEAT 4.2822 0 -0.0544 1 1 206507]98.34%| 13.38561

23 IMSEAET 2.4026 0 -0.0561 1 1 142548} 67.88%| 13.38386
MSEASVT 3.7282 0 -0.0654 1 1 202570}96.46%) 13.37464
MSESET 0.8019 1 0.5941 1 0 39059] 18.60%| 14.03407
Run Mean 0.8308 — -0.3284 1 0 0| 0.00%| 13.11160
MSEAT 0.9195 0 -0.0573 1 1 51104]24.34%| 13.38267

24 |MSEAET 1.2357 0 -0.0562 1 1 1447191 68.91%| 13.38380
MSEASVT 0.9312 0 -0.0574 1 1 41259119.65%] 13.38260
MSESET 1.0097 0 0.4372 1 0 104969 49.99%| 13.87720
Run Mean 1.0467 — 0.3418 1 0 0| 0.00%| 13.78184
MSEAT 2.4424 0 -0.0552 1 1 205833{98.02%| 13.38483

25 |MSEAET 2.1774 0 0.3225 1 0 119358]56.84%| 13.76245
MSEASVT 2.1128 0 -0.0573 1 1 120440} 57.35%) 13.38274
MSESET 0.8652 1 0.8552 0 0 69957} 33.31%) 14.29522
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Micro Analysis of Results
Model: U/Ln/3 Batch Means w/ Initial Q Length
Est. Less +5%0 ) +2%0 %

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.| Trunc [Estimate
Run Mean 0.1471 — 0.2198 0 0 0] 0.00%| 2.480844
MSEAT 0.4918 0 0.0315 1 1 203747197.02%] 2.292456

1 |MSEAET 0.4586 0 0.1241 0 0 207415198.77%| 2.385092
MSEASVT 0.2418 0 0.0468 1 0 175292 83.47%| 2.307843
MSESET 0.1198 1 0.2251 0 0 12815| 6.10%| 2.486126
Run Mean 0.1373 — 0.1391 0 0 0| 0.00%| 2.400066
MSEAT 0.4742 0 0.0269 1 1 192291191.57%| 2.287869

2 |MSEAET 0.4320 0 0.0220 1 1 201211195.81%]| 2.283047
MSEASVT 0.4433 0 0.0265 1 1 182350] 86.83%| 2.287545
MSESET 0.1320 1 0.1149 0 0 48346]23.02%| 2.375853
Run Mean 0.1361 — 0.0316 1 1 0} 0.00%] 2.292619
MSEAT 0.1698 0 0.0264 1 1 108762]51.79%] 2.287424

3 |MSEAET 0.1521 0 -0.1044 1 0 144303]|68.72%| 2.156623
MSEASVT 0.1307 1 0.0264 1 1 4523] 2.15%| 2.287410
MSESET 0.1015 1 0.0289 1 1 81034|38.59%] 2.289878
Run Mean 0.1017 — -0.0020 1 1 0] 0.00%| 2.258998
MSEAT 0.1247 0 0.0265 1 1 19174] 9.13%| 2.287478

4 |MSEAET 0.4894 0 0.0576 1 0 145661169.36%] 2.318572
MSEASVT 0.1322 0 0.0263 1 1 12042| 5.73%| 2.287270
MSESET 0.0810 1 -0.0042 1 1 16812| 8.01%| 2.256805
Run Mean 0.1043 — 0.0519 1 0 0f 0.00%| 2.312910
MSEAT 0.1334 0 0.0264 1 1 29174} 13.89%| 2.287420

5 |MSEAET 0.3409 0 0.0218 1 1 148210]70.58%| 2.282768
MSEASVT 0.1334 0 0.0264 1 1 29174|13.89%| 2.287420
MSESET 0.1208 0 -0.0474 1 0 70995{33.81%| 2.213557
Run Mean 0.1208 — 0.0263 1 1 0] 0.00%| 2.287320
MSEAT 0.1410 0 0.0265 1 1 22828} 10.87%| 2.287482

6 |MSEAET 0.3458 0 0.0257 1 1 145541|69.31%| 2.286685
MSEASVT 0.1215 0 0.0265 1 1 16] 0.01%| 2.287481
MSESET 0.1308 0 0.0797 1 0 101331{48.25%| 2.340695
Run Mean 0.1689 — 0.1962 0 0 0f 0.00%| 2.457176
MSEAT 0.4714 0 0.0250 1 1 197893]94.23%| 2.286043

7 |MSEAET 0.4072 0 0.0270 1 1 204715|97.48%| 2.287970
MSEASVT 0.2739 0 0.0317 1 1 167803|79.91%| 2.292669
MSESET 0.1829 0 0.2912 0 0 93139{44.35%| 2.552181
Run Mean 0.1491 — -0.0213 1 1 0} 0.00%| 2.239743
MSEAT 0.1782 0 0.0264 1 1 125891 59.95%| 2.287374

8 |MSEAET 0.3782 0 0.0596 1 0 180283 85.85%] 2.320576
MSEASVT 0.1509 0 0.0264 1 1 17880| 8.51%| 2.287430
MSESET 0.1317 1 0.0936 1 0 58484|27.85%| 2.354631
Run Mean 0.0860 — 0.0531 1 0 0{ 0.00%] 2.314064
MSEAT 0.1253 0 0.0265 1 1 46172|21.99%| 2.287466

9 |MSEAET 0.3243 0 -0.0442 1 1 151436§72.11%| 2.216817
MSEASVT 0.1129 0 0.0265 1 1 11040| 5.26%| 2.287513
MSESET 0.0745 1 0.0036 1 1 61517]29.29%| 2.264648
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Model: U/Ln/3 Batch Means w/ Initial Q Length
Est. Less +5%0 | +2%0 %

Exp#| Method {1/2 Width| Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.0860 — 0.0531 1 0 0| 0.00%| 2.314064
MSEAT 0.1253] 0 0.0265] 1 1 46172[21.99%| 2.287466

10 |MSEAET 0.3243 0 -0.0442 1 1 151436)72.11%{ 2.216817
MSEASVT 0.1129 0 0.0265 1 1 11040] 5.26%| 2.287513
MSESET 0.0745 1 0.0036 1 1 61517]29.29%| 2.264648
Run Mean 0.1336 —_ 0.0142 1 1 0] 0.00%| 2.275225
MSEAT 0.1555 0 0.0264 1 1 30438|14.49%] 2.287411

11 [MSEAET 0.2407 0 -0.0387 1 | 131026]62.39%] 2.222289
MSEASVT 0.1454 0 0.0264 | 1 7728| 3.68%| 2.287416
MSESET 0.1624 0 0.0735 1 0 98008]46.67%| 2.334479
Run Mean 0.1032] — [-0.0392] 1 1 0] 0.00%| 2.221827
MSEAT 0.2509 0 0.0263 1 1 153144]72.93%} 2.287315

12 |[MSEAET 0.2368 0 -0.1311 0 0 189107]90.05%} 2.129942
MSEASVT 0.2091 0 0.0264 1 1 148456} 70.69%] 2.287404
MSESET 0.1091 0 -0.1377 0 0 93117|44.34%| 2.123265
Run Mean 0.1288] — 0.1309] 0 0 0| 0.00%| 2.391876
MSEAT 0.1776 0 0.0265 1 1 111719]53.20%] 2.287476

13 |MSEAET 0.3192 0 0.1119 1 0 176475] 84.04%] 2.372933
MSEASVT 0.1722 0 0.0265 1 1 110296|52.52%| 2.287456
MSESET 0.1286 | 0.0555 1 0 103443|49.26%| 2.316483
Run Mean 0.1406 — 0.0130 1 1 0| 0.00%} 2.273952
MSEAT 0.1286 1 0.0265 1 1 19413] 9.24%| 2.287476

14 |MSEAET 0.4189 0 0.0219 1 1 146061} 69.55%] 2.282864
MSEASVT 0.1311 1 0.0261 1 1 5385} 2.56%| 2.287112
MSESET 0.0949 1 0.0737 1 0 45511]21.67%| 2.334708
Run Mean 0.1237] — 0.1369] 0 0 0] 0.00%| 2.397907
MSEAT 0.4178 0 0.0266 1 1 185228| 88.20%| 2.287555

15 |MSEAET 0.5308 0 0.0776 1 0 199995|95.24%| 2.338563
MSEASVT 0.4178 0 0.0266 1 1 185228] 88.20%]| 2.287555
MSESET 0.0756 1 0.1234 0 0 39044 18.59%| 2.384376
Run Mean 0.1580 — -0.0238 1 1 0] 0.00%| 2.237229
MSEAT 0.1812 0 0.0134 1 1 59421]28.30%] 2.274402

16 [MSEAET 0.1453 1 -0.1348 0 0 102996 49.05%] 2.126207
MSEASVT 0.1812] 0 0.0134] 1 1 50421]28.30%| 2.274402
MSESET 0.1716 0 -0.1727 0 0 100171}47.70%| 2.088319
Run Mean 0.1570 — 0.0908 1 0 0] 0.00%| 2.351807
MSEAT 0.2243 0 0.0264 1 1 165665} 78.89%] 2.287433

17 |MSEAET 0.3772 0 0.0269 1 1 194071]92.41%]| 2.287897
MSEASVT 0.2374 0 0.0265 1 1 164038] 78.11%| 2.287469
MSESET 0.1724 0 0.2131 0 0 101077]48.13%| 2.474122
Run Mean 0.1347 — -0.0690 1 0 0] 0.00%| 2.192037
MSEAT 0.2682 0 -0.0354 1 1 176450] 84.02%| 2.225610

18 [MSEAET 0.1805 0 -0.1677 0 0 184631|87.92%| 2.093282
MSEASVT 0.2682 0 -0.0354 1 1 176450 84.02%) 2.225610
MSESET 0.0941 1 -0.0991 1 0 54684]126.04%] 2.161918
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Model: U/Ln/3 Batch Means w/ Initial Q Length
Est. Less +5%0 | +2% 0 %o

Exp#| Method |1/2 Width| Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.1074 — 0.0218 1 1 0| 0.00%]| 2.282784
MSEAT 0.1136 0 0.0265 1 1 3480] 1.66%| 2.287476

19 |MSEAET 0.3294 0 0.1439 0 0 125093} 59.57%] 2.404912
MSEASVT 0.1101 0 0.0265 1 1 2184] 1.04%] 2.287485
MSESET 0.0900 1 0.0293 1 1 38360] 18.27%| 2.290307

Run Mean 0.1144 — -0.0096 1 1 0| 0.00%| 2.251363
MSEAT 0.3360 0 0.0280 1 1 184257|87.74%| 2.288995

20 |MSEAET 0.4023 0 0.0616 1 0 199348]94.93%| 2.322562
MSEASVT 0.3362 0 0.0279 1 1 184256]87.74%} 2.288859
MSESET 0.1283 0 -0.1096 1 0 91740]43.69%| 2.151402

Run Mean 0.1637 — 0.0137 1 1 0| 0.00%| 2.274745
MSEAT 0.1554 1 0.0265 1 1 53278|25.37%] 2.287496

21 |MSEAET 0.3151 0 0.0158 1 1 150983} 71.90%] 2.276758
MSEASVT 0.1529 1 0.0265 1 1 4791| 2.28%| 2.287521
MSESET 0.1649 0 0.1100 1 0 103592{49.33%] 2.370996

Run Mean 0.1589 — 0.0380 1 1 0} 0.00%| 2.299047
MSEAT 0.3502 0 0.0262 1 1 172310} 82.05%| 2.287186

22 |MSEAET 0.2714 0 -0.0746 1 0 185252] 88.22%} 2.186387
MSEASVT 0.1755 0 0.0264 1 1 50084]23.85%] 2.287410
MSESET 0.1734 0 -0.0232 1 1 68975]32.85%| 2.237764

Run Mean 0.1131 — 0.0512 1 0 0] 0.00%| 2.312200
MSEAT 0.1386 0 0.0264 1 1 68630]32.68%| 2.287444

23 IMSEAET 0.1592 0 -0.1067 1 0 96816]46.10%| 2.154332
MSEASVT 0.1335 0 0.0265 1 1 56851)27.07%| 2.287461
MSESET 0.0821 1 0.0294 1 1 36369]17.32%] 2.290447

Run Mean 0.0814 — -0.0605 1 0 0| 0.00%| 2.200511
MSEAT 0.3071 0 0.0265 1 1 170133{81.02%| 2.287510

24 |MSEAET 0.5188 0 0.0105 1 1 195970]93.32%} 2.271510
MSEASVT 0.2338 0 0.0265 1 1 156253]74.41%] 2.287469
MSESET 0.0813 1 -0.0775 1 0 71021}33.82%| 2.183463

Run Mean 0.1644 — 0.1593 0 0 0] 0.00%| 2.420261
MSEAT 0.2862 0 0.0263 1 1 158808|75.62%] 2.287343

25 |MSEAET 0.4439 0 0.0131 1 1 186083 88.61%| 2.274097
MSEASVT 0.2949 0 0.0263 1 1 158632]75.54%| 2.287275
MSESET 0.1056 1 0.1577 0 0 36772} 17.51%) 2.418660
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Model: U/ Ln/3 BatchMeans w / Empty & Idle
Est. Less +5%06 | t2% 0 %

Exp#| Method [1/2 Width| Y/N Bias Trunc Pt.] Trunc |Estimate
Run Mean 0.1498 — 0.2176 0 0 0l 0.00%| 2.47857
MSEAT 0.4278 0 0.0305 1 1 202103]96.24%} 2.29154

1 |MSEAET 0.3971 0 0.0962 1 0 206867|98.51%f 2.35723
MSEASVT 0.2418 0 0.0467 1 0 175292}83.47%) 2.30771
MSESET 0.1225 1 0.2251 0 0 12923] 6.15%| 2.48611
Run Mean 0.1370 — 0.1391 0 0 0| 0.00%| 2.40007
MSEAT 0.5382 0 0.0269 1 1 187042|89.07%| 2.28788

2 |MSEAET 0.4289 0 0.0250 1 1 199045|94.78%| 2.28601
MSEASVT 0.4433 0 0.0265 1 1 182350{86.83%| 2.28751
MSESET 0.1320 1 0.1149 0 0 48346}23.02%] 2.37586
Run Mean 0.1361 — 0.0317 1 1 0] 0.00%| 2.29272
MSEAT 0.1410 0 0.0265 1 1 17013] 8.10%| 2.28748

3 |MSEAET 0.1376 0 -0.1044 1 0 113720| 54.15%| 2.15664
MSEASVT 0.1307 1 0.0264 1 1 4523] 2.15%| 2.28740
MSESET 0.1015 1 0.0289 1 1 16801 8.00%| 2.28986
Run Mean 0.1509 — 0.0850 1 0 0] 0.00%| 2.34598
MSEAT 0.4472 0 0.0345 1 1 200279|95.37%| 2.29547

4 MSEAET 0.4992 0 0.1866 0 0 206246{98.21%| 2.44755
MSEASVT 0.2038 0 0.0265 1 1 129280 61.56%| 2.28752
MSESET 0.1430 1 0.1877 0 0 98827|47.06%| 2.44865
Run Mean 0.1053 — 0.0495 1 0 0] 0.00%| 2.31049
MSEAT 0.1334 0 0.0264 1 | 29174|13.89%| 2.28743

5 |MSEAET 0.3442 0 0.0290 1 1 148209] 70.58%| 2.28998
MSEASVT 0.1334 0 0.0264 1 1 29174|13.89%| 2.28743
MSESET 0.1208 0 -0.0474 1 0 70995/ 33.81%| 2.21361
Run Mean 0.1208 — 0.0263 1 | 0|l 0.00%| 2.28732
MSEAT 0.1219 0 0.0265 1 1 17825] 8.49%| 2.28748

6 MSEAET 0.3584 0 0.0268 1 1 143874/ 68.51%| 2.28780
MSEASVT 0.1214 0 0.0265 1 1 13] 0.01%| 2.28747
MSESET 0.1308 0 0.0797 1 0 101332]48.25%| 2.34074
Run Mean 0.1417 —_ 0.1572 0 0 0] 0.00%| 2.41823
MSEAT 0.3608 0 0.0251 1 1 197330|93.97%| 2.28614

7 IMSEAET 0.3750 0 0.0388 1 1 204836|97.54%| 2.29975
MSEASVT 0.3445 0 0.0259 1 1 196146]93.40%| 2.28690
MSESET 0.1513 0 0.2438 0 0 88941]42.35%] 2.50480
Run Mean 0.1493 — -0.0212 1 1 0] 0.00%| 2.23977
MSEAT 0.1491 1 0.0265 1 1 22239|10.59%| 2.28748

8 |MSEAET 0.3123 0 0.0567 1 0 145691{69.38%] 2.31772
MSEASVT 0.1508 0 0.0265 1 1 17871} 8.51%| 2.28746
MSESET 0.1316 1 0.0938 1 0 58484|27.85%| 2.35481
Run Mean 0.0869 — 0.0530 1 0 0| 0.00%| 2.31402
MSEAT 0.1136 0 0.0264 1 1 77711]37.01%} 2.28745

9 |MSEAET 0.3105 0 -0.0451 1 1 161934{77.11%) 2.21585
MSEASVT 0.1123 0 0.0265 1 1 11037) 5.26%| 2.28752
MSESET 0.0745 1 0.0036 1 1 61517]29.29%| 2.26461
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Model: U/ Ln/3 Batch Means w/ Empty & Idle
Est. Less +5%0 | t2% 0 %

Exp#| Method |1/2 Width} Y/N Bias Trunc Pt.} Trunc [Estimate
Run Mean 0.1437 — -0.0150 1 1 0] 0.00%| 2.24603
MSEAT 0.2303 0 0.0263 1 1 123409 58.77%| 2.28730

10 |MSEAET 0.1844 0 -0.1184 0 0 149401|71.14%| 2.14256
MSEASVT 0.2367 0 0.0262 1 1 122871|58.51%| 2.28724
MSESET 0.1147 1 -0.0287 1 1 23072{10.99%| 2.23231
Run Mean 0.1278 — -0.0506 1 0 0|l 0.00%| 2.21043
MSEAT 0.6417 0 0.0220 1 1 208150]99.12%| 2.28296

11 |MSEAET 0.5417 0 0.1619 0 0 207804]98.95%| 2.42294
MSEASVT 0.1637 0 0.0207 1 1 74160]35.31%| 2.28165
MSESET 0.1013 1 -0.0559 I 0 43006] 20.48%| 2.20507
Run Mean 0.1025 — -0.0395 1 1 0] 0.00%| 2.22153
MSEAT 0.2509 0 0.0263 1 1 153144)72.93%| 2.28733

12 |MSEAET 0.2425 0 -0.1144 0 0 189104} 90.05%] 2.14656
MSEASVT 0.2091 0 0.0264 1 1 148456|70.69%| 2.28740
MSESET 0.1090 0 -0.1377 0 0 93117|44.34%| 2.12327
Run Mean 0.1279 —_ 0.1329 0 0 0| 0.00%| 2.39385
MSEAT 0.1780 0 0.0264 1 1 111718]53.20%| 2.28742

13 |MSEAET 0.3992 0 0.0896 1 0 176937/ 84.26%} 2.35058
MSEASVT 0.1723 0 0.0265 1 1 110297[52.52%] 2.28747
MSESET 0.1283 0 0.0555 1 0 103443}49.26%| 2.31650
Run Mean 0.1406 — 0.0130 1 1 0] 0.00%| 2.27399
MSEAT 0.1286 1 0.0265 1 1 19413] 9.24%| 2.28748

14 |MSEAET 0.4189 0 0.0219 1 1 146061| 69.55%| 2.28286
MSEASVT 0.1311 1 0.0261 1 1 5385| 2.56%| 2.28711
MSESET 0.0949 1 0.0737 1 0 45511(21.67%| 2.33471
Run Mean 0.1223 — 0.1367 0 0 0 0.00%| 2.39767
MSEAT 0.4736 0 0.0275 1 1 194874 92.80%] 2.28851

15 |MSEAET 0.4826 0 0.1133 0 0 203196}96.76%| 2.37428
MSEASVT 0.2017 0 0.0414 1 1 136612} 65.05%] 2.30244
MSESET 0.0756 1 0.1232 0 0 39047]|18.59%| 2.38416
Run Mean 0.1580f — -0.0237 1 1 0] 0.00%| 2.23728
MSEAT 0.1812 0 0.0134 1 1 59421]28.30%| 2.27440

16 |MSEAET 0.1453 1 -0.1348 0 0 102996/49.05%| 2.12621
MSEASVT 0.1812 0 0.0134 1 1 59421| 28.30%| 2.27440
MSESET 0.1716 0 -0.1727 0 0 100171{47.70%] 2.08832
Run Mean 0.1566 — 0.0907 1 0 0| 0.00%| 2.35174
MSEAT 0.2363 0 0.0264 1 1 166659 79.36%| 2.28739

17 |MSEAET 0.3250 0 0.0268 1 1 194243{92.50%| 2.28785
MSEASVT 0.2378 0 0.0262 1 1 164038(78.11%| 2.28715
MSESET 0.1724 0 0.2131 0 0 101078} 48.13%| 2.47409
Run Mean 0.1358 — -0.0689 1 0 0] 0.00%| 2.19206
MSEAT 0.2682 0 -0.0353 1 1 1764501 84.02%| 2.22566

18 |[MSEAET 0.1915 0 -0.2413 0 0 195814]93.24%| 2.01972
MSEASVT 0.2682 0 -0.0353 1 1 0.00%] 2.22566
MSESET 0.0941 1 -0.0991 1 0 0.00%| 2.16194
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Model: U/ Ln/ 3 Batch Means w / Empty & Idle
Est. Less +5% 0 +2% 0 %

Exp#| Method |1/2 Width} Y/N Bias Trunc Pt.| Trunc |Estimate
Run Mean 0.1071 — 0.0218 1 1 0] 0.00%| 2.28282
MSEAT 0.1266 0 0.0265 1 1 29766]14.17%] 2.28748

19 |MSEAET 0.3317 0 0.1394 0 0 1338541 63.74%| 2.40042
MSEASVT 0.1104 0 0.0264 1 1 2165] 1.03%| 2.28741
MSESET 0.0900 1 0.0294 1 1 38360] 18.27%) 2.29041
Run Mean 0.1362 —_ -0.0618 1 0 0] 0.00%| 2.19917
MSEAT 0.5784 0 0.0271 1 1 191005§90.95%] 2.28811

20 |MSEAET 0.5167 0 0.0790 1 0 203327}96.82%| 2.34001
MSEASVT 0.4145 0 0.0242 1 1 184035]87.64%| 2.28519
MSESET 0.1564 0 -0.1376 0 0 91751|43.69%| 2.12338
Run Mean 0.1636 — 0.0137 1 1 0] 0.00%| 2.27467
MSEAT 0.1738 0 0.0265 1 1 27816]13.25%| 2.28748

21 [MSEAET 0.3077 0 0.0149 1 1 142496]67.86%| 2.27590
MSEASVT 0.1529 1 0.0265 1 1 4792) 2.28%| 2.28752
MSESET 0.1649 0 0.1100 1 0 103592{49.33%| 2.37098
Run Mean 0.1586 — 0.0383 1 1 0 0.00%| 2.29925
MSEAT 0.3504 0 0.0262 1 1 172313]82.05%] 2.28718

22 |MSEAET 0.2715 0 -0.0749 1 0 185257{88.22%] 2.18615
MSEASVT 0.1755 0 0.0264 1 1 50084]23.85%| 2.28738
MSESET 0.1735 0 -0.0233 1 1 68975|32.85%| 2.23772
Run Mean 0.1131 — 0.0512 1 0 0] 0.00%| 2.31224
MSEAT 0.1345 0 0.0264 1 1 66960]31.89%| 2.28743

23 |MSEAET 0.1621 0 -0.1066 1 0 96259|45.84%| 2.15436
MSEASVT 0.1329 0 .0.0264 1 1 56851]27.07%| 2.28739
MSESET 0.0821 1 0.0295 1 1 36369]17.32%| 2.29047
Run Mean 0.0805 — -0.0607 1 0 0| 0.00%| 2.20029
MSEAT 0.2866 0 0.0266 1 1 176319 83.96%| 2.28759

24 |MSEAET 0.6686 0 -0.0075 1 1 198061194.31%]| 2.25352
MSEASVT 0.2340 0 0.0265 1 1 156259}74.41%] 2.28750
MSESET 0.0814 0 -0.0776 1 0 71021133.82%| 2.18341
Run Mean 0.1600 — 0.1550 0 0 0] 0.00%| 2.41599
MSEAT 0.3498 0 0.0264 1 1 170043/ 80.97%] 2.28737

25 |MSEAET 0.4426 0 0.0139 1 1 189278/ 90.13%{ 2.27486
MSEASVT 0.2951 0 0.0263 1 1 158631|75.54%] 2.28730
MSESET 0.1047 1 0.1567 0 0 36715|17.48%] 2.41775




Micro Analysis of Results

106

Model: E/E/ 4 Batch Means w / Initial Q Length (Large Expected QL)

Est. Less +5%0| +t2% 0 %

Exp#| Method [1/2 Widthl Y/N Bias Trunc Pt.| Trunc|{Estimate
Run Mean 16.3975 — -13.0664; 0 0 0] 0.00%| 79.72964
MSEAT 30.3772 0 -2.7936; 1 1 102928] 49.01%| 90.00241

1 |MSEAET 30.3772 0 -2.7936 1 1 102928 49.01%| 90.00241
MSEASVT 14.7683 1 -12.1421 0 0 11125 5.30%| 80.65388f
MSEASVT(A 20.8613 0 -0.1258 1 1 114759 54.65%| 92.67021
Run Mean 9.0668 — -20.2713 0 0 0| 0.00%| 72.52470
MSEAT 19.9487 0 -20.3534] 0 0 82173] 39.13%| 72.44262

2 |MSEAET 15.9417 0 -20.2907, 0 0 64578 30.75%| 72.50531
MSEASVT 20.96446 0 -19.8920 0 0 78925 37.58%| 72.90404
MSEASVT(A 45.9434] 0 -0.1967 1 1 203817] 97.06%| 92.59934}
Run Mean 13.7412] — -15.6804 0 0 0] 0.00%| 77.11559
MSEAT 16.9458] 0 -14.0155 0 0 54927] 26.16%| 78.78046

3 |MSEAET 11.5777 1 -16.3665 0 0 79668] 37.94%| 76.42945
MSEASVT 13.2669 1 -11.3908] 0 0 18765 8.94%| 81.40521
MSEASVT(A 8.2947 1 -0.4349 1 1 209899 99.95%| 92.36109
Run Mean 30.6707] — 2.1098 1 1 0| 0.00%| 94.90581
MSEAT 12.9280) 1 -23.1112 0 0 99197| 47.24%| 69.68478]

4 IMSEAET 13.2108 1 -22.9550, 0 0 99210 47.24%| 69.84098]
MSEASVT 13.0063 1 -22.7515 0 0 979008 46.62%| 70.04446]
MSEASVT(A 30.7786 0 -0.1245 1 1 11894 5.66%| 92.67144
Run Mean 18.914¢ — 2.5704 1 1 0] 0.00% 95.36645
MSEAT 23.7642 0 10.816§ 0 0 50868] 24.22%]103.61281

5 |MSEAET 16.1074] 1 11.6512 0 0 72443] 34.50%]104.44722
MSEASVT 23.7695 0 10.8121 0 0 50859 24.22%| 103.60805
MSEASVT(A 60.3173 0 -0.1510 1 1 184358] 87.79%| 92.64497
Run Mean 21.3403 — 8.9929 1 0 0| 0.00%|101.78889
MSEAT 21.1579 1 5.6131 1 0 17991 8.57%| 98.40912

6 |MSEAET 12.7913 1 8.7630 1 0 59896 28.52%|101.55897
MSEASVT 20.7997 1 5.4534] 1 0 12428 5.92%| 98.24939
MSEASVT(A 31.0244 0 -0.1245 1 1 128621} 61.25%| 92.67154
Run Mean 12.1379 — -7.2998 1 0 0| 0.00% 85.49617
MSEAT 15.1412 0 -11.3568 0 0 52618 25.06%] 81.43921

7 |MSEAET 11.2017 1 -11.1857 0 0 64288] 30.61%| 81.61026f
MSEASVT 15.1412] 0 -11.3568] 0 0 52618 25.06%| 81.43921
MSEASVT(A 60.1977] 0 -0.1503] 1 1 189075 90.04%| 92.64575
Run Mean 13.6649; — -9.6070 0 0 0| 0.00%| 83.18896§
MSEAT 14.9471 0 -7.9939 1 0 11715 5.58%| 84.80215

8 |MSEAET 11.5460 1 -10.1201 0 0 55711} 26.53%| 82.67591
MSEASVT 14.9457 0 -7.9952) 1 0 11712} 5.58%| 84.80081
MSEASVT(A 48.5668; 0 -0.1261 1 1 177660 84.60%| 92.66985
Run Mean 19.8557 — -5.5940 1 0 0} 0.00%| 87.20196
MSEAT 33.4349 0 7.0606 1 0 104844} 49.93% 99.85664

9 |MSEAET 27.0965 0 3.8205 1 1 74875} 35.65%] 96.61653]
MSEASVT 26.5878 0 -0.4230, | 1 42999 20.48%| 92.37305
MSEASVT(A 31.2750) 0 -0.1152 1 1 87438] 41.64%| 92.68079
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Model: E/E/ 4 Batch Means w / Initial Q Length (Large Expected QL)

Est. Less +5%20| +2% 6 %

Exp#| Method |1/2 Widthl Y/N Bias Trunc Pt.| Trunc|Estimate
Run Mean 14.8659 — -7.0132 1 0 o] 0.00% 85.7827)
MSEAT 21.1973] 0 1.66300 1 1 54263 25.84%| 94.45398]

10 |MSEAET 16.5587] 0 0.4207 1 1 51619] 24.58%| 93.21666
MSEASVT 21.19300 0 1.6605] 1 1 54256] 25.84%| 94.45647
MSEASVT(A)Y  21.7214 0 -0.1226] 1 1 49405] 23.53%] 92.67335
Run Mean 11.0682 — |[-18.4230] 0 0 of 0.00% 74.37304
MSEAT 13.4621) 0 -14.9467] 0 0 100086 47.66%| 77.84930)

11 |MSEAET 969571 1 -14.80200 0 0 75694] 36.04%] 77.99398}

| MSEASVT 11.19220 0 -12.2648 0 0 63196 30.09%] 80.53123}
MSEASVT(A)Y  19.2584 0 012711 1 1 182556 86.93%| 92.66891
Run Mean 20.77300 — 9.1233] 1 0 0| 0.00%[101.91935
MSEAT 28.7265] 0 L0610l 1 1 94587] 45.04%] 93.85702)

12 [MSEAET 23.7899] 0 2.3216 1 1 76789 36.57%| 95.11761
MSEASVT 28.7301] 0 1.0637 1 1 94585) 45.04%| 93.85969
MSEASVT(AY  28.2330] 0 0.1188] 1 1 95625| 45.54%| 92.67722
Run Mean 31.8309 — 27.15100 0 0 o] 0.00%|119.94705
MSEAT 35.1719] 0 30.9316 0 0 13212] 6.29%]123.72765

13 |MSEAET 30.4833] 1 43.7834 0 0 55112 26.24%|136.57944]
MSEASVT 35.1673 0 30.9251 0 0 13200 6.29%]123.72109
MSEASVT(A)Y  54.0511] 0 0.1394 1 1 207911] 99.01%] 92.65663]
Run Mean 38.0373] — 3.2874 1 1 0] 0.00%| 96.08338
MSEAT 59.8804 0 28.8426) 0 0 98965| 47.13%]121.6386

14 |MSEAET 50.5145 0 27.5821 0 0 95496] 45.47%] 120.378 14}
MSEASVT 56.5589] 0 27.9361] 0 0 96597] 46.00%]120.73214}
MSEASVT(A)Y  30.2117] 1 01222 1 1 158071] 75.27%| 92.67375)
Run Mean 17.1068] — |-20.388¢ 0 0 0| 0.00% 72.4073§
MSEAT 24.2635 0 -16.9311) 0 0 40456 19.26%] 75.86487]

15 |MSEAET 8.4953 1 -21.5672 0 0 51147 24.36%] 71.22884]
MSEASVT 24.2632] 0 -16.9316) 0 0 40454 19.26%] 75.86435
MSEASVT(A)Y  24.3109] 0 -16.7863] 0 0 41015] 19.53%] 76.00971
Run Mean 13.2051] — -6.1371] 1 0 0| 0.00%| 86.65886
MSEAT 13.0048] 1 58570 1 0 989 0.47%| 86.93900)

16 |MSEAET 11.2708] 1 71454 1 0 55559 26.46%] 85.65058]
MSEASVT 13.0048] 1 58574 1 0 987] 0.47%] 86.93864]
MSEASVT(AY  16.1903] 0 13218 1 1 40641] 19.35%] 91.47425
Run Mean 24.2990) — 7.4744 1 0 0| 0.00%]100.27040
MSEAT 26.0949 0 10.0925 0 0 15114] 7.20%] 102.88850)

17 [MSEAET 24.0369 1 12.3485 0 0 57902 27.57%] 105.14451
MSEASVT 41.9438] 0 18.83790 0 0 104999} 50.00%{ 111.63394}
MSEASVT(A)Y  48.6713] 0 01127 1 1 170607| 81.24%| 92.68329]
Run Mean 34.5779 — 3.4073 1 1 0] 0.00%| 96.20330

. [MSEAT 49.8511] 0 21.3574 0 0 86225 41.06%]114.15336

18 [MSEAET 46.3446] 0 18.6686 0 0 75058] 35.74%] 111.46462)
MSEASVT 49.84200 0 21.3011] 0 0 86076] 40.99%|114.0971
MSEASVT(A)Y  62.8257] 0 01339 1 1 190381] 90.66% 92.6621
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Model: E/ E/ 4 Batch Means w / Initial Q Length (Large Expected QL)

Est. Less +50l +t2% 0 %

Exp#| Method |1/2 Widthl Y/N Bias Trunc Pt.| Trunc|Estimate
Run Mean 11.9939 — -21.3719 0 0 0| 0.00%] 71.42407
MSEAT 16.3837 0 -19.2812 0 0 14873 7.08%| 73.51476

19 |MSEAET 15.9897 0 -19.5367 0 0 15264 7.27%| 73.25933}
MSEASVT 16.3837 0 -19.2812 0 0 14873} 7.08%| 73.51476
MSEASVT(A 54.1816 0 -0.0580 1 1 205103 97.67%| 92.73797
Run Mean 11.2896 — -14.2757 0 0 0] 0.00%| 78.52031
MSEAT 13.7765 0 -14.6111 0 0 95958] 45.69%| 78.18488]

20 |MSEAET 10.4280) 1 -14.917 0 0 70924 33.77%| 77.87807]
MSEASVT 13.8221 0 -14.6235 0 0 959401 45.69% 78.17251
MSEASVT(A 41.9924 0 -0.1153 1 1 200122 95.30%| 92.68071
Run Mean 19.0474 — -7.7166 1 0 0f 0.00%| 85.07941
MSEAT 16.2572 1 -5.8417 1 0 16051 7.64% 86.95430

21 (MSEAET 15.4412 1 -9.3914 0 0 56495] 26.90%| 83.40456
MSEASVT 16.4422 1 -5.7981 1 0 14514 6.91%| 86.99791
MSEASVT(A 31.8574 0 -0.1253 1 1 147927| 70.44%| 92.67067,
Run Mean 9.213¢ — -17.8338 0 0 0] 0.00%| 74.96224)
MSEAT 13.2664 0 -15.7138 0 0 104984 49.99%| 77.08222

22 |MSEAET 9.3521 0 -15.4601 0 0 76264] 36.32%| 77.33591
MSEASVT 12.5161 0 -12.7196 0 0 38171] 18.18%| 80.07636]
MSEASVT(A) 13.6068 0 -0.1847 1 1 208675 99.37%| 92.61132)
Run Mean 20.8074 — -15.1490 0 0 0] 0.00%| 77.64700
MSEAT 21.0726 0 -14.9278 0 0 734 0.35%| 77.86817

23 |MSEAET 9.6576 1 -22.2432) 0 0 39707 18.91%] 70.55280
MSEASVT 21.0716 0 -14.9281 0 0 733 0.35%] 77.86788
MSEASVT(A 37.8561 0 -0.1293 1 1 2027601 96.55%| 92.66667]
Run Mean 16.6097 — -10.3669 0 0 0] 0.00%| 82.42915
MSEAT 16.2223] 1 -9.9459 0 0 1459 0.69%| 82.85010)

24 |MSEAET 9.6408 1 -11.9410 0 0 45215 21.53%| 80.85503
MSEASVT 16.2213 1 -9.9464 0 0 1458 0.69%] 82.8496
MSEASVT(A 40.6442) 0 -0.1328 1 1 188423] 89.73% 92.66320)
Run Mean 13.06500 — 0.5478 1 1 0] 0.00%| 93.34381
MSEAT 13.5100) 0 2.9430 1 1 9373 4.46%| 95.73899

25 |MSEAET 8.7463 1 3.112§ 1 1 52497 25.00%| 95.90862]
MSEASVT 13.5134} 0 2.9403 1 1 9356 4.46%] 95.7363
MSEASVT(A) 17.5602 0 -0.1211 1 1 57959 27.60%| 92.67494]
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Model: E/E/ 4 Batch Means w / Empty & Idle (Large Expected QL)

Est. 1/2 Less +5%0| +2% 0 %%

Exp#| Method Width Y/N Bias Trunc Pt.] Trunc|Estimate
Run Mean 17.0265 — -14.1765 0 0 0] 0.00% 78.61954
MSEAT 29.1068 0 -3.4821 1 1 102905 49.00%| 89.3139(y

1 |MSEAET 29.1068 0 -3.4821 1 1 102905| 49.00%| 89.31390)
MSEASVT 15.342 1 -12.8283 0 0 11127 5.30% 79.96767
MSEASVT(A)Y 21.09464 0 -0.1250 1 1 115032} 54.78%| 92.67097
Run Mean 9.0747 — -20.2716 0 0 0| 0.00% 72.52435]
MSEAT 19.9485 0 -20.3540 0 0 82173 39.13%) 72.44198]

2 |MSEAET 16.0412 0 -20.2995 0 0 64826 30.87%] 72.49648}
MSEASVT 20.9645 0 -19.8926 0 0 78925] 37.58% 72.90342f
MSEASVT(A)Y 45.9272 0 -0.2050 1 1 203819 97.06%| 92.59101
Run Mean 12.7605 — -16.6315 0 0 0] 0.00%| 76.16448
MSEAT 13.9910 0 -13.3424] 0 0 36160§ 17.22%] 79.45362

3 |MSEAET 9.4979 1 -16.9936 0 0 73483] 34.99%| 75.80243
MSEASVT 13.9872 0 -13.3445 0 0 36149 17.21%] 79.45153]
MSEASVT(A)Y 12.1333 1 -12.5276) 0 0 19800) 9.43%] 80.26845
Run Mean 32.4012 — 2.2663 1 1 0] 0.00%] 95.06229
MSEAT 14.1266 1 -24.8472 0 0 98965 47.13%| 67.94879

4 |MSEAET 14.1266 1 -24.7217 0 0 99086] 47.18%] 68.07435
MSEASVT 14,0352 1 -24.5797, 0 0 97993} 46.66%| 68.21631
MSEASVT(A)Y 33.6985 0 -0.1246 1 1 11837 5.64% 92.67140
Run Mean 19.0495 — 3.8521 1 1 0] 0.00% 96.64808
MSEAT 23.5003 0 13.0277 0 0 53335 25.40%| 105.82368]

5 |MSEAET 16.2706 1 14.1205 0 0 73408) 34.96%]106.91652]
MSEASVT 23.8668| 0 12.9162 0 0 52081] 24.80%{105.71217
MSEASVT(A)Y 59.100 0 -0.1355] 1 1 185100f 88.14%| 92.66052
Run Mean 22.4977 — 7.0383 1 0 0] 0.00%] 99.83434
MSEAT 28.6372 0 9.0022 1 0 103644] 49.35%{ 101.79819

6 |MSEAET 25.3678 0 8.9829 1 0 93767 44.65%|101.77893]
MSEASVT 21.7826 1 4.7481 1 0 10765 5.13%) 97.54405|
MSEASVT(A)Y 31.3014) 0 -0.1247 1 1 127696 60.81%] 92.67134)
Run Mean 11.0961 — -7.769 1 0 0] 0.00% 85.02616
MSEAT 19.1367 0 -11.201 0 0 57191 27.23%| 81.59456

7 |MSEAET 11.3192 0 -10.8534] 0 0 66654 31.74% 81.94253)
MSEASVT 14.6692 0 -10.8610 0 0 52383| 24.94%] 81.93503]
MSEASVT(A)Y 55.9495 0 -0.1373 1 1 189594 90.28%{ 92.65871
Run Mean 14.8261 — -9.2032 1 0 0] 0.00% 83.59275
MSEAT 17.3250 0 -7.7317 1 0 20818 9.91% 85.06428]

8 |MSEAET 13.7468 1 -9.4958 0 0 55144] 26.26% 83.30023}
MSEASVT 16.4695 0 -7.4004 1 0 12193] 5.81%] 85.39562
MSEASVT(A) 34.5210 0 -0.1429 1 1 155391} 74.00%] 92.65309
Run Mean 20.9923 — -4.5776 1 1 0 0.00%} 88.21835
MSEAT 36.5907, 0 8.8400 1 0 104713 49.86%{101.63601

9 [MSEAET 31.4261 0 5.6936 1 0 80158 38.17%| 98.48957
MSEASVT 28.0374 0 1.1034 1 1 43009 20.48%] 93.89945
MSEASVT(AY 25.7988 0 -0.1211 1 1 32140 15.30%] 92.67488]
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Model: E/E/ 4 Batch Means w/ Empty & Idle (Large Expected QL)

Est. 1/2 Less +5%0]| +t2% 0 %

Exp#| Method Width Y/N Bias Trunc Pt.] Trunc|Estimate
Run Mean 14.3840 — -8.1110 1 0 0| 0.00%] 84.68498
MSEAT 19.5070) 0 1.0111 1 1 53833] 25.63%] 93.80708}

10 |MSEAET 15.2951 0 0.0218 1 1 44356) 21.12% 92.81783]
MSEASVT 19.4979 0 1.0065 1 1 53828] 25.63%| 93.80251
MSEASVT(AY 19.7998 0 -0.1216 1 1 50643] 24.12%| 92.67436
Run Mean 12.5535 — -17.5480 0 0 0] 0.00%{ 75.24798]
MSEAT 11.7479 1 -11.2695 0 0 65041 30.97% 81.52646

11 |MSEAET 6.5335 1 -13.5311 0 0 616201 29.34%] 79.26495
MSEASVT 12.0122 1 -10.8995 0 0 60024{ 28.58%] 81.89649
MSEASVT(AY 28.2493 0 -0.1297 1 1 193865 92.32%] 92.66633]
Run Mean 20.9346 — 7.3302 1 0 0] 0.00%]100.12624;
MSEAT 28.9138 0 1.1266 1 1 94597 45.05%| 93.9226(}

12 |MSEAET 23.8925 0 2.7653 1 1 67029 31.92%] 95.56128
MSEASVT 28.9171 0 1.1291 1 1 94595 45.05%| 93.92510
MSEASVT(AY 28.4311 0 -0.1141 1 1 95793| 45.62%| 92.68187
Run Mean 31.9506 — 27.04744 0 0 0] 0.00%]119.84338
MSEAT 35.4786 0 30.4679 0 0 13201] 6.29%]123.263895

13 |MSEAET 29.6183 1 33.24344 0 0 21439 10.21%] 126.039444
MSEASVT 35.4721 0 30.4587 0 0 13179 6.28%]123.25465)
MSEASVT(A)} 51.5360) 0 -0.2562 1 1 207980) 99.04%| 92.53979)
Run Mean 37.6545 — 4.0127 1 1 0| 0.00%] 96.80865
MSEAT 63.1196 0 30.4788 0 0 1017691 48.46%{123.27480

14 {MSEAET 49.8608 0 28.8041 0 0 97314} 46.34%121.60006]
MSEASVT 55.5412 0 28.4948 0 0 965281 45.97%{121.29076
MSEASVT(A)Y 25.0282 1 -0.1200 1 1 1577470 75.12%| 92.67603]
Run Mean 18.3191 — -21.2423 0 0 0} 0.00%] 71.55373
MSEAT 23.3618 0 -18.5318] 0 0 38696] 18.43% 74.26422

15 [MSEAET 7.8530 1 -23.5309 0 0 49318 23.48%| 69.26508]
MSEASVT 23.3552 0 -18.5324; 0 0 38694 18.43%| 74.26365
MSEASVT(A) 25.8541 0 -17.8586 0 0 41028} 19.54%| 74.93743]
Run Mean 13.9314 — -5.8234 1 0 0] 0.00%] 86.97258|
MSEAT 13.8909 1 -5.6673 1 0 583] 0.28%| 87.12875

16 |MSEAET 11.0606 1 -6.2481 1 0 42754 20.36% 86.54791
MSEASVT 13.8861 1 -5.6677 1 0 578 0.28% 87.12824
MSEASVT(A)Y 16.9101 0 -1.0929 1 1 406301 19.35% 91.70313]
Run Mean 24.2774 — 7.4778 1 0 0 0.00%100.27380,
MSEAT 26.0919 0 10.097(} 0 0 15114 7.20%]102.89298]

17 |MSEAET 25.1975 0 12.9911 0 0 62016{ 29.53%] 105.787064
MSEASVT 26.0968 0 10.0937 0 0 151100 7.20%{102.88971
MSEASVT(A) 48.6556 0 -0.1131 1 1 170610 81.24%] 92.68289
Run Mean 33.8037 — 3.8427 1 1 0] 0.00%] 96.63875

- {MSEAT 48.6710) 0 20.8432 0 0 85719 40.82%]113.63919,

18 |MSEAET 42.3974 0 17.4802 0 0 68752 32.74%| 110.27620
MSEASVT 48.6675 0 20.8177 0 0 85675] 40.80%]113.61368]
MSEASVT(A)Y 63.5557 0 -0.1567 1 1 190321] 90.63% 92.63935
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Model: E/E/ 4 Batch Means w/ Empty & Idle (Large Expected QL)

Est. 1/2 Less +5%01] +2% 0O %

Exp#| Method Width Y/N Bias Trunc Pt.| Trunc|Estimate
Run Mean 12.4326 — -20.9436 0 0 0f 0.00%| 71.85243|
MSEAT 17.1281 0 -18.9146 0 0 14869 7.08% 73.88143]

19 [MSEAET 16.2740 0 -19.5719 0 0 16374] 7.80% 73.22410
MSEASVT 17.1281 0 -18.9146 0 0 14869 7.08% 73.88143]
MSEASVT(A)] 61.2140 0 0.1310 1 1 204473 97.37% 92.92698]
Run Mean 11.052¢ — -11.6713 0 0 0] 0.00%| 81.12464
MSEAT 15.4298 0 -12.1024 0 0 93814 44.67%] 80.69361

20 |MSEAET 13.2481 0 -12.2774 0 0 93420 44.49%| 80.51861
MSEASVT 15.3983 0 -12.1138} 0 0 937824 44.66%] 80.68224
MSEASVT(AY 43.5039 0 -0.0721 1 1 199533] 95.02%] 92.72392
Run Mean 19.6149 — -5.8000 1 0 0| 0.00% 86.99604
MSEAT 20.0111 0 -5.5982 1 0 29911| 14.249%] 87.19783)

21 |MSEAET 16.5615 1 -8.6258 1 0 63148] 30.07%] 84.17023
MSEASVT 17.7943 1 -5.0304 1 0 9030 4.30%] 87.76559
MSEASVT(A)Y 29.9221 0 -0.1243 1 1 146545| 69.78%] 92.67168]
Run Mean 10.333 — -17.8674 0 0 0f 0.00%| 74.92856
MSEAT 16.1384 0 -14.7844 0 0 76373] 36.37%] 78.01159

22 |MSEAET 10.3556 0 -15.1333 0 0 55575 26.46%| 77.66272
MSEASVT 16.1384 0 -14.7844) 0 0 76373] 36.37%| 78.01159
MSEASVT(AY 13.9737 0 0.2904 1 1 209886 99.95%] 93.08641
Run Mean 21.3943 —_ -15.232 0 0 0} 0.00% 77.56365
MSEAT 22.1491 0 -14.8770} 0 0 1121} 0.53%| 77.91904

23 |MSEAET 10.3177 1 -22.1375 0 0 39698] 18.90%| 70.65849
MSEASVT 22.1474 0 -14.8773 0 0 1119 0.53%| 77.91866
MSEASVT(A)]| 36.4812 0 -0.0427 1 1 202488] 96.42%| 92.75326
Run Mean 16.608QF — -10.3719, 0 0 0| 0.00%] 82.42412
MSEAT 16.2111 1 -9.9460 0 0 1443 0.69%| 82.84998

24 |MSEAET 10.2772] 1 -11.9794 0 0 46022 21.92%] 80.81656
MSEASVT 16.20944 1 -9.9468 0 0 1441] 0.69% 82.84917
MSEASVT(AY 40.6451 0 -0.1324 1 1 188427 89.73%] 92.66363|
Run Mean 13.0619 — 0.5479 1 1 0] 0.00% 93.34386f
MSEAT 26.3958 0 5.5856 1 0 102351] 48.74%{ 98.381644

25 |MSEAET 13.81244 0 4.0728 1 1 843701 40.18%] 96.86876;
MSEASVT 13.5138] 0 2.9391 1 1 9352 4.45%| 95.73510
MSEASVT(A)Y 17.5576) 0 -0.1225 1 1 57957| 27.60%| 92.67346
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Model: M/M /2 & M/ M/ 3 Tandem Queue w / Initial Q Length
Est. Less +5% 0 +2% 0
Exp# | Method | 1/2 Width Y/N Bias Estimate
Run Mean 1.88088308 — -0.17701849 1 1 38.8774483
MSEAT 0.36183731 1 0.08973975 1 1 39.1442066
1 MSEAET 0.55970889 1 -0.00041470 1 1 39.0540521
MSEASVT 0.36070168 1 4.40147513 0 0 43.4559419
Run Mean 1.88371299 — -0.53087886 1 1 38.5235879
MSEAT 0.11193031 1 -0.06224839 1 1 38.9922184
2 MSEAET 0.35107230 1 -0.14909015 1 1 38.9053766
MSEASVT 0.11391549 1 -0.05815264 1 1 38.9963142
Run Mean 2.20751141 — -0.27642904 1 1 38.7780378
MSEAT 0.68614878 1 0.14334373 1 1 39.1978105
3 MSEAET 0.86605538 1 -0.08822773 1 1 38.9662391
MSEASVT 0.75234751 1 0.00066596 1 1 39.0551328
Run Mean 2.19127572 — 0.23021222 1 i 39.2846790
MSEAT 0.34113488 1 0.17178055 1 1 39.2262474
4 MSEAET 0.54280286 1 -0.14055316 1 1 38.9139136
[MSEASVT 0.33864457 1 0.17700138 1 1 39.2314682
Run Mean 1.85571540 — -0.44205254 1 1 38.6124143
MSEAT 0.16965721 1 -0.06707873 1 1 38.9873881
5 MSEAET 0.49766200 1 -0.36016590 1 1 38.6943009
MSEASVT 0.17047624 1 -0.06636046 1 1 38.9881063
Run Mean 1.57998860 — 0.70257933 1 1 39.7570461
MSEAT 0.05616385 1 -0.02539351 1 1 39.0290733
6 MSEAET 0.33290827 1 -0.30908507 1 1 38.7453817
MSEASVT 0.13472930 1 0.02198484 1 1 39.0764516
Run Mean 2.82011952 — 1.25846776 1 0 40.3129346
MSEAT 0.55895040 1 -0.16695775 1 1 38.8875090
7 MSEAET 0.83483671 1 -0.48617052 1 1 38.5682963
MSEASVT 0.61694225 1 -0.31465720 1 1 38.7398096
Run Mean 2.73433349 — 1.04447331 1 0 40.0989401
MSEAT 0.04923712 1 -0.02159305 1 1 39.0328738
8 MSEAET 0.32143233 1 -0.02416590] 1 1 39.0303009
MSEASVT 0.17444334 1 -0.00371573 1 I 39.0507511
Run Mean 1.14055941 —_ -0.21569416 1 1 38.8387726
~ |MSEAT 0.07358185 1 0.03757109 1 1 39.0920379
9 MSEAET 0.34419201 1 0.08459012 1 1 39.1390569
MSEASVT 0.08730124 1 0.03420436 1 1 39.0886712
Run Mean 1.98043397 — 0.05419663 1 1 39.1086634
MSEAT 0.41346971 1 -0.50519761 1 1 38.5492692
10 |MSEAET 0.77913210 1 -0.84006807 1 0 38.2143987
MSEASVT |- 0.40368513 1 -0.53360288 1 1 38.5208639
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Est. Less +5% 0 +2% 6
Exp# | Method 1/2 Width Y/N Bias Estimate
Run Mean 2.12633665 — 2.33708251 0 0 41.3915493
MSEAT 0.00072568 1 -0.00004492 1 1 39.0544219
11 |MSEAET 0.32328446 1 -0.41035351 1 1 38.6441133
MSEASVT 0.01601172 1 -0.00292768 1 1 39.0515391
Run Mean 1.59358140 — -1.29143581 1 0 37.7630310
MSEAT 0.31762519 1 0.16603629 1 1 39.2205031
12 {MSEAET 0.51462227 1 -0.02180223 1 1 39.0326646
MSEASVT 0.34397725 1 0.15015867 1 1 39.2046255
Run Mean 2.97921980 —_ 2.57353080 0 0 41.6279976
MSEAT 0.05944471 1 -0.03155990 1 1 39.0229069
13 |MSEAET 0.11998624 1 0.05241122 1 1 39.1068780
MSEASVT 0.51304388 1 0.21383316 1 1 39.2683000
Run Mean 1.94285236 — -1.11197451 1 0 37.9424923
MSEAT 0.57780325 1 -0.44064256 1 1 38.6138242
14 |MSEAET 0.69073710 1 -0.54705553 1 1 38.5074113
MSEASVT 0.64002275 1 -0.31130384 1 1 38.7431630
Run Mean 1.91281267 — -0.87298233 1 0 38.1814845
MSEAT 0.00272298 1 0.00153336 1 1 39.0560002
15 |[MSEAET 0.17783368 1 -0.17405990 1 1 38.8804069
MSEASVT 0.20404725 1 -0.11909473 1 1 38.9353721
Run Mean 1.94673988 — 0.36211518 1 1 39.4165820
MSEAT 0.02101926 1 0.01003209 1 1 39.0644989
16 |MSEAET 0.46855165 1 0.01893635 1 1 39.0734032
MSEASVT 0.02962931 1 0.01288387 1 1 39.0673507
Run Mean 1.90741640 — -0.05560888 1 1 38.9988579
MSEAT 0.10926739 1 -0.06626683 1 1 38.9882000
17 |[MSEAET 0.37053203 1 -0.41468332 1 1 38.6397835
MSEASVT 0.10866042 1 -0.06875577 1 1 38.9857110
Run Mean 1.14249854 — -0.59942411 1 1 38.4550427
MSEAT 0.00112829 1 -0.00027464 1 1 39.0541922
18 |MSEAET 0.24168178 1 -0.21960609 1 1 38.8348607
MSEASVT 0.01846578 1 -0.00662219 1 1 39.0478446
Run Mean 1.67428523 — 0.62928487 1 1 39.6837517
MSEAT 0.00174473 1 0.00119870 1 1 39.0556655
19 |[MSEAET 0.22302544 1 -0.14909343 1 1 38.9053734
MSEASVT 0.00494922 1 -0.00614729 1 1 39.0483195
Run Mean 1.87075654 — 0.36409448 1 1 39.4185613
MSEAT 0.06293412 1 -0.03209983 1 1 39.0223670
20 |MSEAET 0.33570175 1 -0.06439118 1 1 38.9900756
MSEASVT 0.06813047 1 -0.03601711 1 1 39.0184497
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Est. Less +5% 9 +2% 0
Exp# | Method 1/2 Width Y/N Bias Estimate
Run Mean 2.14897503 — -1.04447159 1 0 38.0099952
MSEAT 0.64780638 1 -0.44503397 1 1 38.6094328
21 |MSEAET 0.81041109 1 -0.51433441 1 1 38.5401324
MSEASVT 0.74655093 1 -0.31116412 1 1 38.7433027
Run Mean 2.79861262 — -0.52364969 1 1 38.5308171
MSEAT 0.62956796 1 -0.13410550 1 1 38.9203613
22 |MSEAET 0.93636753 1 -0.35996210 1 1 38.6945047
MSEASVT 0.62814569 1 -0.15262745 1 1 38.9018393
Run Mean 2.45376960 — 0.24170791 1 1 39.2961747
MSEAT 0.27002224 1 -0.18335984 1 1 38.8711070
23 |MSEAET 0.58879009 1 -0.54440217 1 1 38.5100646
MSEASVT 0.28363967 1 -0.15450231 1 1 38.8999645
Run Mean 1.47267735 — -0.68594312 1 | 38.3685237
MSEAT 0.29455727 1 -0.25856133 1 1 38.7959055
24 |MSEAET 0.52408700 i -0.52388516 1 1 38.5305816
MSEASVT 0.29551514 1 -0.26542012 1 1 38.7890467
Run Mean 1.83565182 — -0.22995311 1 | 38.8245137
MSEAT 0.15821824 1 -0.12080743 1 1 38.9336594
25 {(MSEAET 0.44615869 1 -0.38342805 1 1 38.6710387
MSEASVT 0.15830547 1 -0.13301245 1 1 38.9214544
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APPENDIX C. GLOSSARY

A method to measure error associated with the sample mean
estimate of the true mean. The absolute error equals the
absolute value of the difference between the sample mean
and the true mean. This is also known as the absolute value
of the bias associated with an estimate.

o

Let Z, = [)‘((n)— u] / yo?/n and let Fn(z) be the distribution

function of Zn for a sample size of "n". The central limit
theorem is: If the sample size "n" of observations of a
random variable Zn is sufficiently large, then the random
variable will be approximately distributed as a standard
normal random variable.

In simulation output, when the initial conditions are such
that they are representative of the steady state conditions, the
estimates produced from a finite simulation run length may

be biased as a result. This bias of the estimate, X -0,

(where X is the sample mean and 6 is the true values) is
referred to as initialization bias.

If X, ....., Xp, is a random sample from a distribution
with finite mean p and variance 62, then the sequence of
sample means converges in probability to L.

X 2.
The expected value of the squared difference between the
sample mean and the true mean. This definition easily

derives an equation using the definitions of bias and the
variance of an estimator.

2
MSE = {Biasli)—((n)}} + GZ[X(n)] This is possible since
bias and variance equal the following:

Bias[X(n)] - E[X(n) - ux}

v f - { o) |




(p—mixing —

Random Variable —

Relabtive Error —

Steady State Dist. —

Stochastic Process —

116

A sequence of stationary random variables, (x1,....,xn), is
defined on a probability space (W, b, P). Basically, the
process of observations of mapped random variables
(Y1,.....,Yn) is said to be phi—mixing if Yi and Yi+j
become independent as j becomes large. In a phi—mixing
process the distant future is virtually independent of the past
and present . This property gives strong Markov process
similarities and allows for easier asymptotic evaluations.

areal valued function defined on a sample space. That is, if
W is an experiment having sample space Z, and Fis a
function which assigns a real number F(x) to every outcome
{x is an element of Z}, then F(x) is called a random
variable.

Discrete Random Variable — if the range space of the
random variable F(x) is either countably infinite or finite,
then F(x) is a discrete random variable. That is, x takes on
values 1, 2, 3, ....only.

Continuous Random Variable — If the range space of
the random variable F(x) is an interval or a collection of
intervals, then F(x) is a continuous random variable. That
is, x takes on any value between 1 and 2 for example.
There is an associated F(x) value for any possible value in
the interval.

A method to measure error associated with the sample mean
estimate of the true mean. The relative error equals the
absolute value of the difference between the sample mean
and the true mean divided by the absolute value of the true

mean. y= ‘)"(- u' ﬁul

For an given value of "x" and set "I" where F(x) is a
random variable and "I" is the set initial conditions, if the
function of x given the set initial conditions, Fi(x | I), goes
to the value of F(x), then F(x) is called the steady state
distribution. This is affected by the desired precision.

a collection of random variables {X(t), tis an element of T}
defined on a common probability space indexed by the
index set T (usually T is time) which describes the evolution
of the system. The set of all possible values that the random
variable X(t) can take is called the state space.
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